Рений: применение и свойства. Металл рений Происхождение и месторождения рения

В конце 20-х годов нашего века крупная зарубежная фирма обратилась к директору одного из заводов цветных металлов в Сибири с выгодным, казалось бы, предложением: продать ей за довольно солидную сумму отвалы пустой породы, скопившиеся около заводской территории.

«Неспроста, должно быть, иностранцы заинтересовались отходами производства», — подумали работники завода. О том, что фирма действовала, как говорится, не корысти ради, а лишь обуреваемая желанием улучшить финансовое положение советского предприятия, разумеется, не могло быть и речи. Значит, нужно было найти, гдв собака зарыта. И заводские химики принялись тщательно исследовать старые отвалы.

А уже вскоре все стало ясно: оказалось, что «пустая» порода содержала редчайший металл рений, открытый за несколько лет до описываемых событий. Поскольку мировое производство рения измерялось в то время буквально граммами, цена на него была поистине фантастической. И немудрено, что представители зарубежной фирмы готовы были раскошелиться, лишь бы заполучить драгоценные отвалы. Но к их великому огорчению сделка по вполне понятным причинам не состоялась.

Что же представляет собой рений и чем был вызван повышенный интерес к нему? Приоритет открытия этого металла принадлежит немецким ученым супругам Иде и Вальтеру Ноддак, однако у них было немало предшественников, стремившихся ускорить торжества по поводу нового элемента.

Дело в том, что еще в 1871 году Д. И. Менделеев предсказал, что в природе «обязаны» существовать два химических аналога марганца, которые в периодической системе должны располагаться под ним, занимая пустовавшие в то время клетки № 43 и 75. Менделеев условно назвал эти элементы эка-марганцем и дви-марганцем.

Претендентов на появившиеся вакансии оказалось более чем достаточно. История химии хранит множество сообщений об открытиях новых элементов, которые после тщательной проверки приходилось «закрывать». Так было и с аналогами марганца. В роли первооткрывателей этих загадочных незнакомцев непрочь были выступить многие химики разных стран, но «открытым» ими элементам (ильмению, дэвию, люцию, ниппонию) суждено было лишь попасть в историю науки, но не заполнить вакансии периодической таблицы.

Правда, один из них — дэвий, открытый в 1877 году русским ученым С. Керном и названный в честь знаменитого английского химика Г. Дэви, давал реакцию, которую в наше время используют в аналитической химии для определения рения. Может быть, Керну и в самом деле довелось держать в руках крупицы темно-серебристого металла, того, что спустя полвека официально появился на свет под названием рений? Но как бы то ни было в клетках № 43 и 75 продолжали торчать унылые вопросительные знаки.

Период неизвестности длился до тех пор, пока в поиски неуловимых элементов не включились немецкие химики Вальтер Ноддак и Ида Такке, которые вскоре, видимо, решили, что работа пойдет успешнее, если они скрепят свой научный союз еще и брачными узами.

Первым объектом их исследований, начатых в 1922 году, стала платиновая руда, однако экспериментировать с ней было довольно накладно, и ученым пришлось переключиться на материалы «попроще». К тому же теоретические работы, которые параллельно с экспериментами вели супруги, убеждали их в том, что, вероятнее всего, искомые элементы № 43 и 75 прячутся в природе в минералах типа колумбитов.

Кроме того, теория позволила ученым рассчитать и приблизительное содержание в земной коре этих не поддающихся открытию элементов: оказалось, что на каждый их атом приходятся миллиарды атомов других представителей химического мира. Стоило ли при этом удивляться, что так долго пустовали «квартиры» № 43 и 75, а их будущие обитатели тем временем водили за нос не одно поколение химиков?

1 Эксперименты супругов Ноддак поражали своим размахом: в течение года они, пользуясь разработанным незадолго до этого рентгеноспектральным методом, «прощупали» 1600 земных минералов и 60 пришельцев из космоса — метеоритов. Титанический труд увенчался успехом: в 1925 году ученые объявили о том, что нашли в колумбите два новых элемента- мазурий (№ 43) и рений (№ 75).

Но объявить об открытии — еще не все. Нужно суметь доказать свою правоту тем, кто поставит под сомнение рождение новых элементов. Одним из таких ученых, усомнившихся в том, что пришла, наконец, пора на место знаков вопроса поставить в таблицу Д. И. Менделеева символы Ма и Re, был известный немецкий химик Вильгельм Прандтль. Крупный теоретик и блестящий экспериментатор, он вступил в ожесточенную дискуссию с супругами Ноддак.

Те, в свою очередь, готовы были любой ценой защищать свой престиж. В конце концов «схватка», за ходом которой с интересом следил научный мир, закончилась вничью: убедительных доказательств в отношении мазурия супруги Ноддак представить не смогли, зато рений к этому моменту существовал уже не только на рентгеноспектрограммах: в 1926 году было выделено 2 миллиграмма нового металла, а спустя год — 120 миллиграммов!

Да и работы других ученых — англичанина Ф. Лоринга, чехов И. Друце, Я. Гейровского и В. Долейжека (они независимо от супругов Ноддак, но лишь на несколько месяцев позже обнаружили элемент № 75 в марганцевых рудах) -свидетельствовали о том, что нашелся истинный владелец соответствующего «апартамента» периодической таблицы.

Рений оказался практически «последним из могикан» — элементов, обнаруженных в природных материалах.

В дальнейшем удалось заполнить еще несколько остававшихся пустыми клеток периодической системы элементов Д. И. Менделеева, но их обитатели были уже получены искусственным путем — с помощью ядерных реакций. Первым среди них суждено было стать бывшему мазурию — элементу № 43, который открывшие его в 1937 году итальянские ученые Э. Сегре и К. Перье назвали технецием (что по-гречески означает «искусственный»).

Но вернемся к рению. Своим именем металл обязан реке Рейн. Рейнская область — родина Иды Ноддак; здесь же и сам рений впервые увидел свет. (Заметим, что ни одной другой реке нашей планеты химики и физики не оказали столь высокой чести.) Промышленное производство нового металла развернулось в начале 30-х годов в Германии, где были найдены молибденовые руды с большим содержанием рения — 100 граммов на тонну.

Всего одна щепотка на гору руды, но для рения и такую концентрацию можно считать необычайно высокой: ведь его среднее содержание в земной коре в десятки тысяч раз ниже. Немного найдется элементов, которые встречаются в природе еще реже, чем рений.

Распространенность химических элементов часто для наглядности изображают в виде пирамиды. Ее широкое основание составляют кислород, кремний, алюминий, железо, кальций, которыми богата Земля, а рений располагается в «поднебесье» — на самом острие вершины.

Как полагал академик А. Е. Ферсман, для рения характерно «тяготение» к тем зонам земного шара, которые прилегают к его ядру. Возможно, со временем геологи сумеют проникнуть в самые недра нашей планеты и газеты всего мира опубликуют сенсационное сообщение об открытии там богатейшего рениевого месторождения…

В 1930 году мировое производство рения составляло всего… 3 грамма (зато каждый из этих граммов стоил ни мало, ни много — 40 тысяч марок!). Но уже спустя 10 лет только в одной Германии было получено примерно 200 килограммов этого металла.

С тех пор интерес к рению растет как на дрожжах. Он оказался одним из самых тяжелых металлов — чуть ли не в три раза тяжелее железа. Только осмий, иридий и платина по плотности немного превосходят рений. Характерная его черта — необычайная тугоплавкость: по температуре плавления (3180°С) он уступает лишь вольфраму. А температура его кипения настолько высока, что до сих пор ее не удалось определить с большой степенью точности. Можно лишь сказать, что она близка к 6000°С (только вольфрам кипит примерно при такой же температуре).

Еще одно важное свойство этого металла — высокое электросопротивление. Не менее любопытны и химические свойства рения. Ни один другой элемент периодической системы не может похвастать тем, что, подобно рению, имеет восемь различных окислов. Кроме этого «октета» окислов, где валентность рения меняется от 8 до 1, он — единственный среди всех металлов- способен образовать ионы (так называемые «ренид-ионы»), в которых металл отрицательно одновалентен.

Рений весьма устойчив на воздухе: при комнатной температуре его поверхность остается блестящей десятки лет. В этом с ним могут конкурировать, пожалуй, лишь золото, платина и другие представители «благородного семейства». Если оценить все металлы с точки зрения их коррозионной стойкости, то в этой «табели о рангах» рению по праву должно быть предоставлено одно из самых почетных мест. Ведь самые «злые» кислоты — плавиковая, соляная, серная — не в силах с ним справиться, хотя перед азотной кислотой он пасует.

Как видите, свойства рения достаточно разнообразны. Многогранна и его деятельность в современной технике. Пожалуй, наиболее важную роль рений играет в создании различных кислотоупорных и жаропрочных сплавов. Техника XX века предъявляет к конструкционным материалам все более и более жесткие требования.

Возможно, старику Хоттабычу для получения сплава с любыми заданными свойствами понадобилось бы лишь вырвать два-три волоска из своей бороды. Ученым обладающим даром волшебства, приходится тратить на это долгие годы, да и «расход» волос при этом порой бывает значительно выше.

Можно с полным основанием сказать, что с тех пор, как создатели сплавов взяли на вооружение, рений, им удалось добиться немалых успехов. Во всяком случае жаропрочные сплавы этого металла с вольфрамом и танталом уже успели завоевать признание конструкторов. Еще бы: мало какому материалу по плечу сохранять при «адских» температурах — до 3000°С! — ценные механические свойства, а для рениевых сплавов — это не проблема.

Особый интерес металловедов вызывает «рениевый эффект»- благотворное влияние рения на свойства вольфрама и молибдена. Дело в том, что эти тугоплавкие металлы, которые не только не боятся высоких температур, но и стойко переносят при этом значительные нагрузки, в обычных условиях (не говоря даже о легком морозе) ведут себя весьма капризно: они хрупки и от удара могут разлететься на кусочки, как стекло. Но оказалось, что в сочетании с рением вольфрам и молибден образуют прочные сплавы, сохраняющие пластичность даже при низких температурах.

Природа «рениевого эффекта» еще недостаточно изучена. Как полагают ученые, суть его в следующем. В процессе производства в вольфрам и молибден иногда проникает «инфекция» — углерод. Поскольку в твердом состоянии эти металлы совершенно не растворяют углерод, ему ничего не остается, как расположиться в виде тончайших карбидных пленок по границам кристаллов. Именно эти пленки и делают металл хрупким.

У рения же с углеродом иные «взаимоотношения»: если его добавить к вольфраму или молибдену, то ему удается удалить углерод с пограничных участков и перевести в твердый раствор, где тот практически безвреден. Теперь уже для хрупкости у металла нет оснований и он становится вполне пластичным. Вот почему из сплавов вольфрама и молибдена с рением можно изготовить фольгу или проволоку в несколько раз тоньше человеческого волоса.

Для сверхточных навигационных приборов, которыми пользуются космонавты, летчики, моряки, необходимы так называемые торсионы — тончайшие (диаметром всего несколько десятков микрон!), но удивительно прочные металлические нити. Лучшим материалом для них считается молибденорени-евый сплав (50% рения). Оценить его прочность можно по такому факту: проволочка из него сечением в 1 квадратный миллиметр способна выдержать нагрузку в несколько сот килограммов!

Сегодня трудно найти на земле уголок, куда бы не проникло еще электричество. В промышленности и сельском хо-20 зяйстве, на транспорте и в быту постоянно трудится несчетное число электроприборов. Множество приборов — это множество выключателей, множество контактов. При работе выключателя в нем иногда проскакивает крохотная искорка, которую не следует считать безобидной: медленно, но верно она разрушает электрический контакт, а это приводит к непредусмотренной потере электроэнергии.

Какой бы мизерной ни была это потеря, но помноженная на миллиарды контактов, она становится огромной. Особенно важно обеспечить стойкость контактов в тех случаях, когда они работают в условиях повышенной температуры или влажности, где вероятность их разрушения возрастает. Вот почему ученые постоянно ищут все более стойкие — прочные и тугоплавкие — материалы для изготовления контактов.

Долгое время для этой цели не без успеха применяли вольфрам. Когда же стали известны характеристики рения, выяснилось, что рениевые контакты лучше вольфрамовых. Так, например, вольфрамовые контакты выдерживали совместное «наступление» тропической коррозии и вибрации лишь несколько суток, а затем полностью выходили из строя; рениевые же контакты успешно работают в таких условиях месяцы и даже годы.

Но где же напастись столько рения, чтобы удовлетворить им электротехническую промышленность? Опыты показали, что вовсе не обязательно делать контакт из чистого рения. Достаточно добавить к вольфраму немного этого металла, и эффект будет почти тот же. Зато расходы рения сократятся во много раз: одного килограмма его хватает на десятки тысяч контактов.

Один из вольфраморениевых сплавов, выпускаемый нашей промышленностью, уже нашел применение более чем в 50 электровакуумных приборах. Использование этого материала в катодном узле электроннолучевой трубки повысило его долговечность до 16 тысяч часов. Это значит, что если экран телевизора светится в наших домах в среднем по четыре часа в день, то его катодный узел сможет безупречно работать не менее 12 лет.

Замечательные свойства продемонстрировали и другие сплавы рения — с ниобием, никелем, хромом, палладием. Даже небольшие добавки рения повышают, например, температуру плавления хромоникелевого сплава примерно на 200-250 градусов.

Широким диапазоном свойств рениевых сплавов объясняется и многообразие сфер их применения: от высокочувствительных термопар, не боящихся жарких объятий расплавленной стали, до кончиков вечных перьев, опор компасных стрелок и других деталей, которые должны долгое время сохранять большую твердость, прочность, износостойкость.

Число сплавов рения с другими металлами постоянно растет, причем сегодня в подборе «партнеров» для него значительную помощь металловедам оказывает электронная вычислительная техника. С помощью1 ЭВМ уже предсказаны свойства многих двойных сплавов рения.

Для борьбы с коррозией — вечным врагом металла — ученые разработали немало способов. Хромирование, никелирование, цинкование взяты на вооружение много лет назад, а вот ренирование — процесс сравнительно новый. Тончайшие рениевые покрытия по стойкости не знают себе равных. Они надежно защищают детали от действия кислот, щелочей, морской воды, сернистых соединений и многих других опасных для металла веществ.

Цистерны и баки, изготовленные из ренированных стальных листов, применяют, например, для перевозки соляной кислоты.

Ренирование позволяет в несколько раз продлить срок службы вольфрамовых нитей в электролампах, электронных трубках, электровакуумных приборах. После откачки воздуха в баллоне электролампы неизбежно остаются следы кислорода и водяных паров; они же всегда присутствуют и в газонаполненных лампах.

На вольфрам эти непрошеные гости действуют разрушающе, но если покрыть нити рениевой «рубашкой», то водород и пары воды уже не в силах причинить вольфраму вред. При этом расход рения совсем невелик: из одного грамма можно получить сотни метров ренированной вольфрамовой нити.

Новая, но очень важная область применения рения — катализ. Металлический рений, а также многие его сплавы и соединения (окислы, сульфиды, перренаты) оказались отличными катализаторами различных процессов — окисления аммиака и метана, превращения этилена в этан, получения альдегидов и кетонов из спиртов, крекинга нефти.

Самый многообещающий катализатор — порошкообразный рений, способный поглощать большие количества водорода и других газов. По мнению специалистов, в ближайшие годы на катализацион-ные «нужды» будет расходоваться половина рения, добываемого во всем мире.

Как вы убедились, «безработица» рению не грозит. Однако шлагбаумами на пути широкого использования его в технике оказались редкость и рассеянность этого элемента в природе. В земной коре золота, например, содержится в пять раз больше, чем рения, серебра-в сто раз, вольфрама — в тысячу, марганца — почти в миллион, а железа — в 50 миллионов раз больше. О чрезвычайной рассеянности рения говорит тот факт, что этот элемент не имеет собственных месторождений.

Практически единственный минерал, который можно назвать рениевым, -джезказганит (он найден вблизи казахского города Джезказган). Обычно же рений встречается в качестве примеси, например, в молибдените (до 1,88%), колумбите, колчедане и других минералах. Рения в них очень мало — всего от миллиграммов до нескольких граммов на тонну.

Стоит ли удивляться, что супругам Ноддак, чтобы получить первый грамм сравнительно чистого металлического рения, пришлось переработать более 600 килограммов норвежского молибденита. По подсчетам специалистов, рениевые запасы всех месторождений капиталистических стран оцениваются всего в тысячу тонн.

Еще один крупный «недостаток» рения-его высокая стоимость: он значительно дороже золота. Тем не менее спрос на этот металл все время растет, особенно в последние годы, когда им заинтересовались творцы ракетной техники.

До недавнего времени рений в нашей стране получали только из медного и молибденового сырья. В конце 70-х годов ученые Института металлургии и обогащения АН Казахской ССР создали технологию извлечения этого ценнейшего металла из полупродуктов свинцового производства. В основе новой технологии лежат ионообменные процессы, позволяющие получать очень чистый металл, обладающий высокими физико-химическими свойствами.

…В 1960 году в Институт металлургии имени А. А. Бай-кова Академии наук СССР приехали иностранные гости. Казалось бы, для работников института, имеющего мировое значение, в этом факте не было ничего примечательного — здесь привыкли к визитам зарубежных коллег любого ранга. Однако гости, о которых идет речь, — убеленная сединами супружеская пара — вызывали особое уважение: это были приехавшие в Москву супруги Ноддак.

Долго ходили они по комнатам лаборатории редких и тугоплавких металлов и сплавов. Их интерес был понятен: ученые лаборатории под руководством члена-корреспондента Академии наук СССР Е. М. Савицкого уже несколько лет занимались исследованием рения и сумели получить весьма важные результаты. Замечательному металлу предстояло в стенах института раскрыть новые грани своего дарования, обрести новые профессии, и, конечно же, супругов Ноддак не могла не волновать дальнейшая судьба их детища.

Д. И. Менделеев в 1869 г. предсказал существование и свойства двух эле­ментов VII группы - аналогов марганца, которые предварительно назвал "эка- марганец" и "дви-марганец". Они соответствуют известным в настоящее время элементам - технецию (порядковый номер 43) и рению (порядковый номер 75).

В последующие 53 года многие исследователи сообщали об открытии аналогов марганца, но без убедительных оснований. Теперь мы знаем, что поиски эле­мента №43 в природных соединениях не могли увенчаться успехом, так как он неустойчив. Лишь в 1937 г. этот элемент был получен искусственно Э. Сегре и К. Пёрье путем бомбардировки ядер молибдена дейтронами я назван технецием (от греческого "техно" - искусственный).

В 1922 г. немецкие химики Вальтер и Ида Ноддаки начали систематические поиски аналогов марганца в различных минералах. Из 1 кг колумбита они выде­лили 0,2 г продукта, обогащенного молибденом, вольфрамом, рутением и осми­ем. В этом продукте по характеристическим рентгеновским спектрам был обна­ружен элемент с порядковым номером 75. О своем открытии Ноддаки сообщили в 1925 г. и назвали элемент рением. Позже, в 1927 г., Ноддаки установили, что в значительных концентрациях (до сотых долей процента) рений содержится в молибдените, из которого элемент был выделен в количествах, позволивших изучить химические свойства его соединений и получить металл.

Производство рения и его соединений в небольших количествах впервые воз - никло в Германии в 1930 г. на Мансфельдском заводе, где рений извлекали из печных настылей, образующихся при плавке медистых сланцев, содержащих при­месь молибденита. В СССР производство рения возникло в 1948 г.

Свойства рения

Рений - тугоплавкий тяжелый металл, по внешнему виду похож на сталь. Не­которые физические свойства рения приведены ниже:

Атомный номер 75

Атомная масса 186,31

Тип и периоды решетки. . . . Гексагональная,

Плотноупакованная а = 0,276, с = 0,445 нм

TOC \o "1-3" \h \z Плотность, г/см3 21,0

Температура, °С:

Плавления........ 3180±20

Кипения ~5900

Удельная теплоемкость средняя при

0-1200 °С, Дж/(г" °С) .... 0,153

Удельное электросопротивление

Р *10«, ОМ"см 19,8

Температура перехода в состояние

Сверхпроводимости, К. . . . 1,7

Работа выхода электронов, зВ 4,8 Сечение захвата тепловых нейтронов

П" 1024, см2 85

Твердость НВ отожженного металла, МПа 2000 Временное сопротивление (кованые и

Затем отожженные прутки) бв, МПа 1155

Модуль упругости Е, ГПа. . . 470

По температуре плавления рений занимает второе место среди металлов, ус­тупая лишь вольфраму, а по плотности - четвертое (после осмия, иридия и платины). Удельное электросопротивление рения почти в 4 раза выше, чем вольфрама и молибдена.

В отличие от вольфрама рений пластичен в литом и рекристаллизованном со­стоянии и можеть быть деформирован на холоду. Вследствие высокого модуля упругости после небольшой деформации твердость рения сильно возрастает - проявляется сильный наклеп. Однако после отжига в защитной среде или в ва­кууме металл вновь приобретает пластичность.

Изделия из рения (в отличие от изделий из вольфрама) выдерживают много­кратные нагревы и охлаждения без потери прочности. Сварные швы нехрупкие. Прочность рения до 1200 °С выше, чем вольфрама, и значительно превосходит прочность молибдена.

Рений устойчив на воздухе при обычной температуре. Заметное окисление металла начинается при 300 °С и интенсивно протекает выше 600 ос с образо­ванием высшего оксида Re207.

С водородом и азотом рений не реагирует вплоть до температуры плавления и не образует карбидон. Эвтектика в системе рений - углерод плавится при 2480 °С.

С фтором и хлором рений реагирует при нагревании, с бромом и иодом прак­тически не взаимодействует. Рений устойчив в соляной и плавиковой кислотах

На холоду и при нагревании. В азотной кислоте, горячей концентрированной серной кислоте и перекиси водорода металл растворяется.

Рений стоек против действия расплавленных олова, цинка, серебра и меди, слегка разъедается алюминием н легко растворяется в жидких железе н никеле.

С тугонлавкимн металлами (вольфрамом, молибдене»!, танталом и ниобием) рений образует твердые растворы с предельным содержанием рения 30-50 % (по массе).

Свойства химических соединений

Наиболее характерны и устойчивы соединения рения высшей степени +7. Кро­ме того, известны соединения, отвечающие степеням окисления 6;5;4;3;2;1; а также -1.

Оксиды. Рений образует три устойчивых оксида: рениевый ангидрид, триок­сид и диоксид.

Рениевый ангидрид Re207 образуется при окислении ренияокислородом. Цвет - светло-желтый, плавится при 297 °С, точка кипения 363 С. Растворяется в воде с образованием рениевой кислоты HRe04.

Триоксид рения Re03 - твердое вещество оранжево-красного цвета, образу­ется при неполном окислении порошка рения. В воде и разбавленных соляной и серной кислотах малорастворим. При температурах выше 400 °С обладает замет­ной летучестью.

Диоксид рения Re02 темно-бурое твердое вещество, получается восстановле­нием RejO; водородом при 300 °С. Диоксид нерастворим в воде, разбавленных соляной и серной кислотах. При нагревании в вакууме (выше 750 °С) диспро - порционирует с образованием Re207 и рения.

Рениевая кислота и ее соли - перреиаты. Рениевая кислота - сильная од­ноосновная кислота. В отличие от марганцевой кислоты, HRe04 - слабый окис­литель. При взаимодействии с оксидами, карбонатами, щелочами она образует перренаты. К малорастворимым в воде относятся перренаты калия, таллия и ру­бидия, умеренно растворимы перренаты аммония и меди, хорошо растворимы в воде перреваты натрия, магния, кальция.

Хлориды рения. Наиболее изучены хлориды ReCl3 и ReCl3. Пентахлорид рения образуется при действии хлора на металлический рений при температуре выше 400 °С. Вещество темно-коричневого цвета. Плавится при 260 °С, точка кипе­ния 330 °С. В воде разлагается с образованием HRe04 и Re02"xH20.

Трихлорид ReCl3 - красно-черное вещество, получается в результате терми­ческой диссоциации ReCl5 при температуре выше 200 °С. Температура плавЛения 730 °С, возгоняется при 500-550 °С

Известны два оксихлорида: ReOCl4 (температура плавления 30 °С, кипения 228 °С) и ReOjCl (жидкость, кипит при 130 °С).

Сульфиды рения. Известны два сульфида - RejS? и ReS2. Высший сульфид - темно-бурое вещество, осаждается сероводородом из кислых и щелочных раство­ров. Дисульфид рения ReS2 получается термическим разложением Re2Sy (выше 300 °С) или прямым взаимодействием рения с серой нри 850-1000 °С. ReS2 кри­сталлизуется в слоистой решетке, идентичной с решеткой молибденита. На воз­духе при температуре выше 300 °С окисляется с образованием Re207.

Области применения рения

В настоящее время определились следующие эффективные области применения рения.

Катализаторы. Рений и его соединения входят в состав катализаторов для ряда процессов в химической и нефтяной промышленности. Это наиболее масшатабная область примене­ния рения. Наибольшее значение приобрели рений-содержащие катализаторы в крекинге нефти. Применение рениевых ката­лизаторов позволило увеличить производительность устано­вок, повысить выход легких фракций бензина, снизить зат-. раты на катализаторы путем замены большей части платины рением.

Электроосветительная и электровакуумная техника. В ря­де ответственных случаев, когда необходимо обеспечить долговечность работы электроламп и электронных приборов (особенно в условиях динамической нагрузки), в этой об­ласти вместо вольфрама применяют рений или сплавы рения с вольфрамом и молибденом. Преимущества рения и его сплавов перед вольфрамом состоят в лучших прочностных характерис­тиках и сохранении пластичности в рекристаллизованном со­стоянии, меньшей склонности к испарению в вакууме в при­сутствии следов влаги (сопротивление водородно-водяному циклу), более высоком электросопротивлении. Из рения и сплавов вольфрама с рением (до 30% Re) изготовляют нити накала, керны катодов и подогревателей, сетки радиоламп. В электронных приборах используют также сплав Мо-50% Re, сочетающий высокую прочность с пластичностью.

Жаропрочные сплавы - одно из важных направлений ис­пользования рения. Сплавы рения с другими тугоплавкими металлами (вольфрамом, молибденом и танталом) наряду с жаропрочностью и тугоплавкостью отличаются пластичностю. Их используют в авиа - и космической технике (детали тер­моионных двигателей, носовые насадки ракет, части ракет­ных сопел, лопатки газовых турбин и др.).

Сплавы для термопар. Рений и его сплавы с вольфрамом и молибденом обладают высокой и стабильной термоэлектродви­жущей силой (т. э.д. с.). В СССР широко используют термопа­ры из сплавов (W-5 % Re) - (W - 20% Re). Т. э.д. с. этой термопары в пределах 0-2500 °С находится в линейной зави­симости от температуры. При 2000 °С т. э.д. с. равна 30 мВ. Преимущество термопары - сохранение пластичности после длительного нагревания при высокой температуре.

Электроконганкты. Рений и его сплавы с вольфрамом. от­личаются высокими износостойкостью и сопротивлением эле - 226 ктрокоррозии в условиях образования электрической дуги. Они более стойки, чем вольфрам, при эксплуатации в тропи­ческих условиях. Испытания контактов из сплавов W - 15-%Re в регуляторах напряжения и приборах зажигания дви­гателей показали их преимущества перед вольфрамом.

Приборостроение. Рений и его сплавы, отличающиеся вы­сокой твердостью и износостойкостью, используют для изго­товления деталей различных приборов, например опор для весов, осей геодезической аппаратуры, шарнирных опор, пружин. Испытания работы плоских пружин из рения при тем­пературе 800 °С и многократных циклах нагрева показали отсутствие остаточной деформации и сохранение начальной твердости.

Масштабы производства рения в зарубежных странах в 1986 г. находились на уровне 8 т/год. Основные производи­тели - США и Чили, в 1986 г. в США использовано 6,4 т ре­ния.

2. СЫРЬЕВЫЕ ИСТОЧНИКИ РЕНИЯ

Рений - типичный рассеянный элемент. Содержание его в земной коре низкое - 10 7 % (по массе). Повышенные концен­трации рения, имеющие промышленное значение, наблюдаются в сульфидах меди и особенно в молибдените.

Связь рения с молибденом обусловлена изоморфизмом MoS2 и ReS2. Содержание рения в молибденитах различных место­рождений составляет от Ю-1 до 10"5%. Более богаты рени­ем молибдениты медно-молибденовых месторождений, в част­ности медно-порфировых руд. Так, молибденитовые концент­раты, получаемые при обогащении медно-порфировых руд СССР, содержат 0,02-0,17 % рения. Значительные ресурсы рения сосредоточены в некоторых месторождениях меди, от­носящихся к типу медистых песчаников и медистых сланцев. К этому типу относятся руды Джезказганского месторождения СССР. Более богаты рением руды с повышенным содержанием борнита CuFeS4. В полученных флотацией медных концентра­тах содержится 0,002-0,003 % Re. Предполагают, что рений находится в них в виде тонкодисперсного минерала CuReS4 - джезказганита.

Поведение рения при переработке молибденитовых концентратов

При окислительном обжиге молибденитовых концентратов, проводимом при 560-600 °С, содержащийся в концентрате ре­ний образует оксид Re207, который уносится с газовым по­током (точка кипения Re207 363 °С). Степень возгонки ре­ния зависит от условий обжига и минералогического состава концентрата. Так, при обжиге концентратов в многоподовых печах степень возгонки рения не выше 50-60 % Из рис.60

Рас.60. Изменение содержания серы, рения и степени окисления молибденита (пунк­тир) по подам восьмиподовой печи

Видно, что рений возгоняется с газами на 6-8 подах (при обжиге в 8-подовой печи), когда большая часть молибденита окислена. Это объясняется тем, что в присутствии MoS2 об­разуется малолетучий диоксид рения по реакции:

MoS2+2Re207 = 4Re02+ Mo02+2S02. (5.1)

Кроме того, неполный возгон рения может быть обуслов­лен частичным взаимодействием Re207 с кальцитом, а также оксидами железа и меди с образованием перренатов. Напри­мер, с кальцитом возможна реакция:

CaC03+Re207 = Ca(Re04)2+C02. (5.2)

Номер пода

Советскими исследователями установлено, что наиболее полно рений возгоняется при обжиге молибденитовых концен­тратов в кипящем слое. Степень возгонки составляет 92-96 %. Это объясняется отсутствием при обжиге в печах

КС условий для образования низших оксидов рения и перре - натов. Эффективное улавливание рения из газовой фазы дос­тигается в системах мокрого пылеулавливания, состоящих из скрубберов и мокрых электрофильтров. Рений в этом случае содержится в сернокислых растворах. Чтобы увеличить кон­центрацию рения, растворы многократно циркулируют. Из системы мокрого улавливания выводят растворы, содержащие, г/л: Re 0,2-0,8; Мо 5-12 и H2SO„ 80-150. Небольшая часть рения содержится в шламах.

В случае неполного возгона рения при обжиге концентра­та рений, оставшийся в огарке, переходит в аммиачные или содовые растворы выщелачивания огарков и остается в ма­точных растворах после осаждения соединений молибдена.

При использовании вместо окислительного обжига разло­жения молибденита азотной кислотой (см. гл.1) рений пере­ходит в азотно-сернокислые маточные растворы, которые со­держат в зависимости от принятых режимов, г/л: H2S04 150-200; HN03 50-100; Мо 10-20; Re 0,02-0,1 (в зависимос­ти от содержания в сырье).

Таким образом, источником получения рения при перера­ботке молибденитовых концентратов могут служить сернокис­лые растворы мокрых систем пылеулавливания и маточные (сбросные) растворы после гидрометаллургической перера­ботки огарков, а также азотно-сернокислые маточные рас­творы от разложения молибденита азотной кислотой.

Поведение рения в производстве меди

При плавке медных концетратов в отражательных или руд - нотермических электропечах с газами летит до 75 % рения, при продувке штейна в конвертерах весь содержащийся в них рений удаляется с газами. Если печные и конвертерные га­зы, содержащие SOz, направляются в серной кислоты, то рений концентрируется в промывной циркулирую­щей серной кислоте электрофильтров. В промывную кислоту переходит 45-80% рения, содержащегося в медных концент­ратах. Промывная кислота содержит 0,1-0,5 г/л рения и ~500г/л H2S04, а также примеси меди, цинка, железа, мы­шьяка и др. и служит основным источником получения рения при переработке медных концентратов.

Серебристо-белый метал с атомной массой 186.2, валентностью 3, 4, 6, 7, плотностью 21 0 г / см3, с температурой плавления 3170 C, с удельным электросопротивлением 0,193 Ом-ми.

Металл редкий и дорогой. Из него делают лишь особо ответственные и, как правило, малогабаритные детали.

относится к довольно редким и рассеянным элементам земной коры. Значительные его концентрации довольно редки - максимальная (2 - 3 %) обнаружена в минералах молибденита. Молибдениты встречаются в кварцевых рудных жилах и отдельных пегматитах, в которых первичный осмий практически отсутствует. Таким образом, в молибденитах накапливается только радиогенный осмий.

не растворяется ни на холоду, ни при нагревании в соляной и фтористоводородной кислотах.

Находящийся в виде порошка или мелкой стружки, можно сплавить со щелочами.

не встречается в природе в виде самостоятельных минералов, однако он в очень незначительных количествах встречается в различных рудах и минералах других элементов.

в обычных условиях не взаимодействует с серной кислотой, а марганец не реагирует с пероксидом водорода.

Свойства

получают спеканием в вакууме в виде штабиков, который затем подвергают холодной прокатке.

присутствует в разнообразных природных и промышленных материалах, которые различаются между собой числом и содержанием сопутствующих элементов. Концентрация рения в природных и промышленных объектах изменяется в широком диапазоне и составляет от 10 - 7 до десятков процентов. Для определения рения в природных и промышленных объектах применяются различные методы: химические, физико-химические и физические. Из-за высокой летучести соединений рения и малого его содержания в природных материалах необходимо уделять особое внимание операциям, связанным с разложением проб, выпариванием растворов и его выделением.

выделяют из отходов переработки руд молибдена и других металлов, причем вследствие очень малого содержания Re предварительно проводят ряд операций концентрирования.

выделяется в виде мелкого пирофорного порошка, который отделяют от КОН промыванием водой. Компактный металл получают методами порошковой металлургии. Ежегодное производство рения измеряется тоннами.

определяют методом добавок. Результаты анализа совпадают с данными потенциометрического титрования.

Полученный методом горячего вакуумного прессования, имеет мелкозернистую структуру. На границе раздела рений-графит промежуточных фаз не обнаружено. Об отсутствии взаимодействия между графитом и рением при давлении 250 кгс / см2 и температуре 2100 С свидетельствуют и измерения микротвердости рения. Такое высокое значение может быть объяснено значительной деформацией рения, а также наличием в нем твердого раствора углерода.

может быть извлечен и из другого полупродукта молибденового производства - из растворов, получаемых при выщелачивании молибденового огарка.

не имеет собственных минералов. Наиболее интересными носителями концентраций рения являются высокотемпературные сульфиды медно-молибденовых руд. Поддается прокатке и вытяжке только при красном калении.

способен сплавляться со многими металлами, причем сплавы в большинстве случаев обладают большой твердостью. Использование рения в технике все время расширяется благодаря его свойствам.

в растворах обычно находится в семивалентном состоянии. Поэтому во многих случаях перед определением рения анализируемый раствор обрабатывают восстановителем, При этом основной трудностью является восстановление рения до определенного валентного состояния.

растворяется в азотной кислоте, образуя HReO4, с разбавленными соляной и серной кислотами не взаимодействует.

Нанесенный на оксид алюминия без платины, восстанавливается до металлического состояния более легко при значительных концентрациях и трудно при малых. Это может быть обусловлено высокой дисперсностью низкопроцентных рениевых контактов, при которой возможно сильное взаимодействие рения и его оксидов с акцепторными участками поверхности носителя, что и препятствует восстановлению.

Применение

применяется в вакуумных электронных и полупроводниковых приборах. Используется в качестве высокоизбирательного катализатора в процессах гидрирования и дегидрирования. Антитела, меченные рением, использовались в экспериментах по лечению аденокарциномы ободочной кишки, легких и яичника. применяется в медицинских инструментах, оборудовании для получения глубокого вакуума и в сплавах для изготовления электрических контактов и термопар. Кроме того, его применяют для покрытия ювелирных изделий.

используется в радиоэлектронике, при производстве специальных сплавов. Рениевые катализаторы весьма эффективны для процессов гидрирования.

может найти применение в самых различных областях, однако из-за высокой стоимости и редкости в настоящее время этот металл не применяется в широком промышленном масштабе. Описан сплав, содержащий вольфрам , молибден и рений, из которого изготовляются электрические контакты.

и сплавы на его основе также применяются для нанесения покрытий на металлы.

Являющийся относительно редким материалом, в последние годы находит применение в качестве технологического материала в различных областях. Он пpименяется для изготовления электрических контактов, термопар, катодов.

Применение рения - очень дорогого и редкого металла может быть оправдано только в том случае, если он обеспечивает значительные преимущества перед другими металлами и сплавами. В настоящее время не ставится вопрос об использовании рения для работы в окислительных средах.

Применение рения ограничено малой доступностью металла. И все же в настоящее время рений используют в сплавах с платиной для термопар. Рений применяют для изготовления нитей накаливания электрических ламп, он входит в состав сплавов, из которых делают перья для автоматических ручек.

Применение рения пока еще ограничено малым масштабом его производства, но он относится к перспективным металлам, обладая химической инертностью, хорошими механическими свойствами и высокой температурой плавления.

Высокие цены на рений ограничивают возможность его промышленного использования. Поэтому применение рения ограничивается изготовлением изделий, где небольшие количества металла обеспечивают высокие эксплуатационные характеристики.

В последнее время значительно возрос интерес к рению, его сплавам и соединениям в связи с их уникальными физическими и химическими свойствами, позволяющими создавать материалы, отвечающие высоким требованиям различных областей новой техники. Широко осваивается применение рения и его соединений в качестве катализаторов в химической промышленности.

Они распадаются в основном на два класса, а именно: патенты по применению рения в качестве катализатора и патенты по использованию некоторых свойств рения и его сплавов для электротехнических и других целей.

Влияние легирования рением на деформационное поведение и механические свойства гетерофазных монокристаллов легированного жаропрочного сплава на основе №3А1

Г.П. Грабовецкая, Ю.Р. Колобов, В.П. Бунтушкин1, Э.В. Козлов2

1 Институт физики прочности и материаловедения СО РАН, Томск, 634021, Россия 2 Всероссийский институт авиационных материалов, Москва, 107005, Россия 3 Томский государственной архитектурно-строительный университет, Томск, 634003, Россия

Методами растровой электронной микроскопии изучены структура и фазовый состав монокристаллов <001 > сплава типа ВКНА. Исследовано влияние легирования рением на деформационное поведение и температурную зависимость механических свойств монокристаллов в интервале температур 293-1373 К. Обсуждаются возможные физические причины изменения характера деформационного поведения легированных рением монокристаллов <001 > сплавов типа ВКНА в интервале температур 2931 073 К.

The effect of Re alloying on deformation behavior and mechanical properties of heterophase single crystals of doped high-temperature Ni3Al-based alloy

G.P. Grabovetskaya, Yu.R. Kolobov, V.P. Buntushkin, and E.V Kozlov

The structure and phase composition of single crystals<001> of VKHA-type alloy have been investigated by scanning electron microscopy. The effect of Re alloying on deformation behavior and temperature dependence of mechanical properties of above-mentioned single crystals in the temperature range of 293-1 373 K has been examined. Consideration are given to possible physical reasons of changing deformation behavior characteristics of Re alloying of single crystals <001> of VKHA-type alloy in the temperature range of 293-1 073 K.

1. Введение

Перспективными материалами для лопаток турбин

в настоящее время являются поли- и монокристаллы жаропрочных (у + у") никелевых сплавов с большой

объемной долей -фазы (интерметаллид №3А1) со сверх-

структурой L12. Такие сплавы обладают высокой жаропрочностью и могут длительное время функционировать при высоких температурах. Поликристаллические сплавы на основе №3А1 достаточно хорошо исследованы

В частности установлено, что в таких материалах процессы деформации и разрушения при высокотемпературной ползучести локализуются на границах зерен. Это приводит к зарождению и диффузионно-контролируемому росту зернограничных клиновидных трещин

При одновременном развитии проскальзывания по границам зерен . Отсутствие границ зерен в монокристаллах указанных сплавов устраняет отрицательные последствия зернограничных процессов и позволяет су-

щественно улучшить эксплуатационные характеристики рассматриваемых сплавов.

В работах показано, что в процессе деформации монокристаллов (у + у/)-сплавов при достижении касательными напряжениями в действующей системе скольжения критической величины зарождение скольжения имеет место на межфазных границах у/у". Скольжение развивается вначале в у-фазе, а затем происходит прорезание частиц высокопрочной у"-фазы дислокациями. В дальнейшем с увеличением деформации скольжение развивается также и у"-фазе. При этом оно преимущественно локализуется в менее прочной у-фазе. Отсюда, чем меньше в объеме у-фазы, тем больше скольжения в -фазе и тем выше сопротивление деформированию монокристалла (у + у")-сплава. Другой способ увеличения прочности монокристаллов (у + у")-сплавов - легирование элементами, увеличивающими прочностные характеристики у- и у7-фаз.

© Грабовецкая Г.П., Колобов Ю.Р, Бунтушкин В.П., Козлов Э.В., 2004

В настоящей работе проведено исследование влияния легирования рением на деформационное поведение и температурную зависимость механических свойств сложнолегированных монокристаллов сплава на основе Ni3Al.

2. Материал и методика испытаний

В качестве материала для исследования использовали монокристаллы <001 > сплава на основе Ni3Al, содержащего элементы Cr, Ti, W, Mo, Hf, C, суммарное количество которых не превышало 14 вес. % (сплав типа ВКНА).

Микроструктуру сплава исследовали с помощью растрового (Philips SEM 515) микроскопа. Фазовый состав определяли методами рентгеноструктурного анализа на установке ДРОН-2.

Механические испытания на растяжение проводили на модернизированной установке ПВ-3012М в интервале температур 293-1373 K со скоростью 3.3*10-3 с1. Образцы для механических испытаний в форме двойной лопатки с размерами рабочей части 10x2.5x1 мм вырезали электроискровым способом. Перед испытанием с поверхностей образцов удаляли слой толщиной около 100 мкм механической шлифовкой и электролитической полировкой.

3. Результаты эксперимента и их обсуждение

Исследования структуры показали, что в исходном состоянии (состояние 1) монокристаллы <001 > сплава

типа ВКНА содержит две фазы-у и у7. В объеме сплава наблюдаются крупные выделения неправильной формы у"-фазы размерами 30-100 мкм и мелкодисперсная смесь пластин у7- и у-фаз, размерами порядка нескольких микрометров в длину и ~ 1 мкм в ширину (рис. 1, а). Основной объем занимает Y-фаза (-90 %) - твердый раствор на основе Ni3Al. При этом объемная доля крупных выделений Y-фазы составляет -22 %.

Введение в сплав небольшого (менее 2 вес. %) коли-

чества рения (состояние 2) приводит к появлению в

объеме монокристаллов третьей фазы - А1^е. Однако ее объемная доля не превышает 0.5 %. Основной объем материала по-прежнему занимает у7-фаза (-75 %). При этом объемная доля крупных выделений у7-фазы снижается до 10 %, а их размеры до 5-30 мкм (рис. 1, б).

На рис. 2, 3 представлены типичные кривые течения и температурная зависимость механических свойств при растяжении монокристаллов <001 > сплава ВКНА в состоянии 1 в интервале температур 293-1 373 К. Из рис. 2 видно, что на кривых течения указанных монокристаллов при температурах ниже 1073 К наблюдается протяженная стадия деформационного упрочнения с высоким коэффициентом деформационного упрочнения, что характерно для множественного скольжения в октаэдрических плоскостях монокристаллов со сверхструктурой L12 . Такой характер скольжения подтверждается и наличием на предварительно полированной поверхности монокристаллов <001 > сплава типа ВКНА в состоянии 1 после испытаний в интервале температур 293-1 073 К тонких и/или грубых следов скольжения в двух взаимно перпендикулярных системах скольжения, которые проходят через обе фазы не прерываясь.

На кривых течения монокристаллов <001 > сплава типа ВКНА в состоянии 1 при температурах 1 273 и 1373 К наблюдается площадка или острый зуб текучести, за которым следует протяженная стадия деформационного упрочнения с низким коэффициентом деформационного упрочнения. Такой тип кривых растяжения характерен для монокристаллов со сверхструктурой L12 в случае, если деформация осуществляется скольжением дислокаций в плоскости куба. На предварительно полированной поверхности образцов после испытания при температурах выше 1073 К следы скольжения не наблюдаются, что характерно для кубического скольжения в монокристаллах <001 > интерметаллида №3А1 . Вблизи места разрушения появляются трещины. Они располагаются по границам раздела крупных денд-ритов у7-фазы и мелкодисперсной смеси (у + у7)-фаз. Плотность трещин р не высока. Например, после испы-

Рис. 1. Структура монокристаллов сплава ВКНА в состояниях 1 (а) и 2 (б)

Деформация, %

Рис. 2. Кривые течения монокристаллов <001> сплава ВКНА в состоянии 1, рассчитанные в приближении равномерного удлинения: 293 (1); 873 (2); 1073 (3); 1273 (4); 1373 К (5)

Температура, К

Рис. 4. Зависимость величины предела прочности (1), предела текучести (2) и деформации до разрушения (3) от температуры испытания монокристаллов <001 > сплава типа ВКНА в состоянии 2

тания при 1373 К р составляет -10 мм-2. Длина трещин колеблется от 20 до 150 мкм.

Особые кривые течения для монокристаллов <001 > сплава типа ВКНА в состоянии 1 наблюдаются при температуре 1 073 К. Для этой температуры характерна очень короткая стадия деформационного упрочнения с максимальным коэффициентом деформационного упрочнения, которая сменяется стадией разупрочнения. На поверхности образцов после растяжения при температуре 1073 К наблюдаются как следы скольжения в двух взаимно перпендикулярных системах скольжения, так и трещины.

Из рис. 3 видно, что для монокристаллов < 001 > сплава типа ВКНА в состоянии 1 характерно монотонное увеличение предела текучести а0 2 в интервале температур 293-1 073 К, а затем после достижения максимума в при температуре, близкой к 1 073 К, его резкое падение. Пластичность монокристаллов <001 > сплава

типа ВКНА в состоянии 1 с увеличением температуры уменьшается, достигает минимума при температуре 1073 К, а затем увеличивается. Величина предела прочности ав монокристаллов <001 > сплава типа ВКНА в состоянии 1 в интервале температур 293-873 К практически не изменяется. При увеличении температуры ав вначале слабо увеличивается и, достигая максимума при 1073 К, резко падает.

Таким образом, температурная зависимость деформационного поведения, прочностных и пластических характеристик монокристаллов <001 > сплава типа ВКНА в состоянии 1 аналогична аномальной зависимости таковых для монокристаллов интерметаллида №3А1 .

Легирование рением приводит к существенному повышению значений а 02 и а в монокристаллов <001 > сплава типа ВКНА в интервале температур от комнатной до 873 К (рис. 4), что может быть связано с твердо-

Рис. 3. Зависимость величины предела прочности (1), предела теку- Рис. 5. Кривые течения монокристаллов <001> сплава ВКНА в со-

чести (2) и деформации до разрушения (3) от температуры испытания стоянии 2, рассчитанные в приближении равномерного удлинения:

монокристаллов <001> сплава типа ВКНА в состоянии 1 293 (1); 1073 (2); 1173 (3); 1273 (4); 1373 К (5)

растворным упрочнением . При этом в указанном температурном интервале значения а0 2 и ав практически постоянны. При температурах выше 873 К значения а02 и а в монокристаллов <001 > сплава типа ВКНА в состоянии 2 резко уменьшаются до значений, соответствующих состоянию 1. Величина 8 монокристаллов <001 > сплава типа ВКНА при легировании рением наоборот понижается по сравнению с соответствующими значениями 8 для состояния 1. Однако во всем исследованном интервале температур она монотонно увеличивается с ростом температуры от 16 до 33 % (рис. 4).

На рис. 5 представлены типичные кривые течения при растяжении монокристаллов <001 > сплава типа ВКНА в состоянии 2 в интервале температур 2931373 К. Из рис. 5 видно, что на кривой течения указанных монокристаллов при комнатной температуре наблюдается протяженная стадия деформационного упрочнения с большим коэффициентом деформационного упрочнения, чем соответствующий состоянию 1. С увеличением температуры испытания протяженность стадии деформационного упрочнения монокристаллов <001 > сплава типа ВКНА в состоянии 2 монотонно увеличивается, а коэффициент деформационного упрочнения монотонно уменьшается. В то время как коэффициент деформационного упрочнения для монокристаллов <001 > сплава типа ВКНА в состоянии 1 с ростом температуры изменяется по кривой с максимумом (рис. 2).

На предварительно полированной поверхности монокристаллов <001 > сплава ВКНА в состоянии 2, как и на поверхности монокристаллов <001 > сплава типа ВКНА в состоянии 1, после растяжения в интервале температур 293-1073 К имеются тонкие и/или грубые следы скольжения в двух взаимно перпендикулярных системах скольжения, а после испытания при температурах выше 1073 следы скольжения отсутствуют. При этом плотность и длина трещин на поверхности вблизи места разрушения в монокристаллах <001 > сплава ВКНА в состоянии 2 меньше, чем в состоянии 1. Так, после растяжения при 1373 К плотность трещин на поверхности монокристаллов <001 > сплава ВКНА в состоянии 2 составляет -3 мм-2, а длина трещин колеблется от 15 до 30 мкм.

Таким образом, приведенные данные показывают, что легирование рением приводит к качественному изменению деформационного поведения монокристаллов <001 > сплавов типа ВКНА в интервале температур 2931073 К.

Аномальная зависимость деформационного поведения и прочностных характеристик интерметаллида №3А1 от температуры, в соответствии с , связана с образованием в процессе деформации в монокристаллах со сверхструктурой L12 термоактивированных дислокационных барьеров типа Кира-Вильсдорфа, кото-

рые в определенном температурном интервале практически не разрушаются. Дислокационные барьеры типа Кира-Вильсдорфа - это две расщепленные сверхчас-тичные дислокации, связанные между собой полосой антифазной границы в плоскости куба. Энергия активации образования и разрушения указанных барьеров в значительной степени определяется энергиями антифазной границы и дефекта упаковки. Известно , что величины энергий антифазной границы и дефекта упаковки интерметаллида Ni3Al существенно зависят от типа и количества легирующих элементов. Отсюда можно предполагать, что изменение характера температурных зависимостей значений ст02, ств и 8 монокристаллов <001 > сплавов типа ВКНА при легировании рением связано с изменением величин энергий антифаз-ной границы и дефекта упаковки в Y-фазе.

4. Заключение

Таким образом, легирование рением приводит к изменению характера деформационного поведения монокристаллов <001 > сплавов типа ВКНА в интервале температур 293-1073 K. При этом наблюдается повышение коэффициентов деформационного упрочнения и прочностных характеристик указанных монокристаллов при сохранении удовлетворительной пластичности.

Литература

1. Портной К.И., Бунтушкин В.П., Мелимевкер ОД. Конструкционный сплав на основе интерметаллида Ni3Al // МиТОМ. - 1982. -№ 6. - С. 23-26.

2. Колобов Ю.Р. Диффузионно-контролируемые процессы на грани-

цах зерен и пластичность металлических поликристаллов. - Новосибирск: Наука, 1998. - 173 с.

3. Колобов Ю.Р., Касымов М.К., Афанасьев Н.И. Исследование зако-

номерностей и механизмов высокотемпературного разрушения легированного интерметаллида // ФММ. - 1989. - Т. 66. - Вып. 5. -С. 987-992.

4. Грабовецкая Г.П., Зверев И.К., Колобов Ю.Р. Развитие пластической деформации и разрушения при ползучести легированных сплавов на основе Ni3Al с различным содержанием бора // ФММ. -1994. - Т. 7. - Вып. 3. - С. 152-158.

5. Шалин Р.Е., Светлов И.Л., Качанов Е.Б. и др. Монокристаллы никелевых жаропрочных сплавов. - М.: Машиностроение, 1997. -333 с.

6. Пуарье Ж.П. Высокотемпературная ползучесть кристаллических тел. - М.: Металлургия, 1982. - 272 с.

7. Каблов Е.Н., Голубовский Е.Р. Жаропрочность никелевых сплавов. - М.: Машиностроение, 1998. - 463 с.

8. Попов Л.Е., Конева Н.А., Терешко И.В. Деформационное упрочнение упорядоченных сплавов. - М.: Металлургия, 1979. -255 с.

9. Гринберг Б.Ф., Иванов М.А. Интерметаллиды: микроструктура, деформационное поведение. - Екатеринбург: НИСО УрО РАН, 2002. - 359 с.

10. ThorntonP.H., DaviesP.G., Johnston T.I. The temperature dependence of the flow stress of the Y phase based upon Ni3Al // Metallurgical Transactions. - 1970. - No. 1. - P. 207-212.

11. Liu C.T, Pope D.P. Ni3Al and its alloys // Intermetallic Compounds. -1994. - V. 2. - P. 17-51.

12. Vbissere P. Weak-beam study of dislocations moving on {100} planes at 800 °C in Ni3Al // Philos. Mag. - 1984. - V. 50A. - P. 189-303.