Вычислительные средства прошлых лет. История развития средств вычислительной техники

ОСНОВЫ ПК

Люди всегда испытывали потребность в счете. Для этого они использовали пальцы рук, камешки, которые складывали в ку­чки или располагали в ряд. Число предметов фиксировалось с по­мощью черточек, которые проводились по земле, с помощью за­рубок на палках и узелков, которые завязывались на веревке.

С увеличением количества подлежащих подсчету предметов, развитием наук и ремесел появилась необходимость в проведении простейших вычислений. Самым древним инструментом, известным в различных странах, являются счеты (в Древнем Риме они называ­лись calculi). Они позволяют производить простейшие вычисления над большими числами. Счеты оказались настолько удачным инст­рументом, что дожили с древних времен почти до наших дней.

Никто не может назвать точное время и место появления сче­тов. Историки сходятся во мнении, что их возраст составляет не­сколько тысяч лет, а их родиной могут быть и Древний Китай, и Древний Египет, и Древняя Греция.

1.1. КРАТКАЯ ИСТОРИЯ

РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

С развитием точных наук появилась настоятельная необходи­мость в проведении большого количества точных вычислений. В 1642 г. французский математик Блез Паскаль сконструировал первую механическую счетную машину, известную как суммиру­ющая машина Паскаля (рис. 1.1). Эта машина представляла собой комбинацию взаимосвязанных колесиков и приводов. На колеси­ках были нанесены цифры от 0 до 9. Когда первое колесико (еди­ницы) делало полный оборот, в действие автоматически приво­дилось второе колесико (десятки); когда и оно достигало цифры 9, начинало вращаться третье колесико и т.д. Машина Паскаля могла только складывать и вычитать.

В 1694 г. немецкий математик Готфрид Вильгельм фон Лейбниц сконструировал более совершенную счетную машину (рис. 1.2). Он был убежден, что его изобретение найдет широкое применение не только в науке, но и в быту. В от­личие от машины Паскаля Лейб­ниц использовал цилиндры, а не колесики и приводы. На цилинд­ры были нанесены цифры. Каждый цилиндр имел девять рядов высту­пов или зубцов. При этом первый ряд содержал 1 выступ, второй - 2 и так вплоть до девятого ряда, который содержал 9 выступов. Ци­линдры были подвижными и при­водились в определенное положе­ние оператором. Конструкция ма­шины Лейбница была более совер­шенной: она была способна выпол­нять не только сложение и вычи­тание, но и умножение, деление и даже извлечение квадратного корня.

Интересно, что потомки этой конструкции дожили до 70-х годов XX в. в форме механических каль­куляторов (арифмометр типа «Фе­ликс») и широко использовались для различных расчетов (рис. 1.3). Однако уже в конце XIX в. с изоб­ретением электромагнитного реле появились первые электромехани­ческие счетные устройства. В 1887 г. Герман Голлерит (США) изобрел электромеханический табулятор с вводом чисел с помощью перфо­карт. На идею использовать перфо­карты его натолкнула пробивка компостером проездных билетов на железнодорожном транспорте. Раз­работанная им 80-колонная перфо­карта не претерпела существенных изменений и в качестве носителя информации использовалась в пер­вых трех поколениях компьютеров. Табуляторы Голлерита использова­лись во время 1-й переписи насе­ления в России в 1897 г. Сам изобретатель тогда специально приезжал в Санкт-Петербург. С этого времени электромеханические табуляторы и другие подобные им устройства стали широко применяться в бухгалтерском учете.

В начале XIX в. Чарльз Бэббидж сформулировал основные по­ложения, которые должны лежать в основе конструкции вычис­лительной машины принципиально нового типа.

В такой машине, по его мнению, должны быть «склад» для хранения цифровой информации, специальное устройство, осу­ществляющее операции над числами, взятыми со «склада». Бэб­бидж называл такое устройство «мельницей». Другое устройство служит для управления последовательностью выполнения опера­ций, передачей чисел со «склада» на «мельницу» и обратно, на­конец, в машине должно быть устройство для ввода исходных дан­ных и вывода результатов вычислений. Эта машина так никогда и не была построена - существовали лишь ее модели (рис. 1.4), но принципы, положенные в ее основу, были позже реализованы в цифровых ЭВМ.

Научные идеи Бэббиджа увлекли дочь известного английско­го поэта лорда Байрона - графиню Аду Августу Лавлейс. Она заложила первые фундаментальные идеи о взаимодействии раз­личных блоков вычислительной машины и последовательности решения на ней задач. Поэтому Аду Лавлейс по праву считают первым в мире программистом. Многими понятиями, введенны­ми Адой Лавлейс в описания первых в мире программ, широко пользуются современные программисты.

Рис. 1.1. Суммирующая машина Паскаля

Рис. 1.2. Счетная машина Лейбница

Рис. 1.3. Арифмометр «Феликс»

Рис. 1.4. Машина Бэббиджа

Началом новой эры развития вычислительной техники на базе электромеханических реле стал 1934 г. Американская фирма IBM (International Buisness Machins) начала выпуск алфавитно-циф­ровых табуляторов, способных выполнять операции умножения. В середине 30-х годов XX в. на основе табуляторов создается про­образ первой локальной вычислительной сети. В Питсбурге (США) в универмаге была установлена система, состоящая из 250 терми­налов, соединенных телефонными линиями с 20 табуляторами и 15 пишущими машинками для расчетов с покупателями. В 1934 - 1936 гг. немецкий инженер Конрад Цузе пришел к идее создания универсальной вычислительной машины с программным управлением и хранением информации в запоминающем устройстве. Он сконструировал машину «Z-3» - это была первая программно-управляемая вычислительная машина – прообраз современных ЭВМ (рис. 1.5).


Рис. 1.5. Вычислительная машина Цузе

Это была релейная машина, использующая двоичную систему счисления, имеющая память на 64 числа с плавающей запятой. В арифметическом блоке пользовалась параллельная арифметика. Команда включала операционную и ад­ресную части. Ввод данных осуществлялся с помощью десятичной клавиатуры, был предусмотрен цифровой вывод, а также автоматическое преобразование десятич­ных чисел в двоичные и обратно. Ско­рость выполнения операции сложения - три операции в секунду.

В начале 40-х годов XX в. в лаборато­риях IBM совместно с учеными Гарвар­дского университета была начата разработка одной из самых мощных электромеханических вычислительных машин. Она получила название MARK-1, содержала 760 тыс. компонентов и весила 5 т (рис. 1.6).

Рис. 1.6. Вычислительная машина MARK -1

Последним наиболее крупным проектом в сфере релейной вычислительной техники (ВТ) следует считать построенную в 1957 г. в СССР РВМ-1, которая по целому ряду задач была вполне конкурентоспособна тогдашним ЭВМ. Тем не менее с появлением электронной лампы дни электромеханических устройств остава­лись сочтены. Электронные компоненты обладали большим пре­восходством в быстродействии и надежности, что и определило дальнейшую судьбу электромеханических вычислительных машин. Наступила эра электронных вычислительных машин.

Переход к следующему этапу развития средств вычислитель­ной техники и технологии программирования был бы невозмо­жен без основополагающих научных исследований в области пе­редачи и обработки информации. Развитие теории информации связано прежде всего с именем Клода Шеннона. Отцом киберне­тики по праву считается Норберт Винер, а создателем теории ав­томатов является Генрих фон Нейман.

Концепция кибернетики родилась из синтеза многих научных направлений: во-первых, как общий подход к описанию и ана­лизу действий живых организмов и вычислительных машин или иных автоматов; во-вторых, из аналогий между поведением со­обществ живых организмов и человеческого общества и возмож­ностью их описания с помощью общей теории управления; и, наконец, из синтеза теории передачи информации и статисти­ческой физики, который привел к важнейшему открытию, связывающему количество информации и отрицательную энтропию в системе. Сам термин «кибернетика» происходит от греческого слова, означающего «кормчий», он впервые был применен Н.Ви­нером в современном смысле в 1947 г. Книга Н.Винера, в кото­рой он сформулировал основные принципы кибернетики, на­зывается «Кибернетика или управление и связь в животном и машине».

Клод Шеннон - американский инженер и математик, чело­век, которого называют отцом современной теорий информации. Он доказал, что работу переключателей и реле в электрических схемах можно представить посредством алгебры, изобретенной в середине XIX в. английским математиком Джорджем Булем. С тех пор булева алгебра стала основой для анализа логической струк­туры систем любого уровня сложности.

Шеннон доказал, что всякий зашумленный канал связи харак­теризуется предельной скоростью передачи информации, назы­ваемой пределом Шеннона. При скоростях передачи выше этого предела неизбежны ошибки в передаваемой информации. Однако с помощью соответствующих методов кодирования информации можно получить сколь угодно малую вероятность ошибки при любой зашумленности канала. Его исследования явились фунда­ментом для разработки систем передачи информации по линиям связи.

В 1946 г. блестящий американский математик венгерского про­исхождения Генрих фон Нейман сформулировал основную кон­цепцию хранения команд компьютера в его собственной внутрен­ней памяти, что послужило огромным толчком к развитию элек­тронно-вычислительной техники.

Во время Второй мировой войны он служил консультантом в атомном центре в Лос-Аламосе, где занимался расчетами взрыв­ной детонации ядерной бомбы и участвовал в разработке водо­родной бомбы.

Нейману принадлежат работы, связанные с логической орга­низацией компьютеров, проблемами функционирования машин­ной памяти, самовоспроизводящихся систем и др. Он принимал участие в создании первой электронной вычислительной машины ENIAC, предложенная им архитектура компьютера была положе­на в основу всех последующих моделей и до сих пор так и называ­ется - «фон-неймановской».

I поколение компьютеров . В 1946 г. в США были закончены работы по созданию ENIAC - первой вычис­лительной машины на электрон­ных компонентах (рис. 1.7).

Рис. 1.7. Первая ЭВМ ENIAC

Новая машина имела впечатляющие па­раметры: в ней использовалось 18 тыс. электронных ламп, она зани­мала помещение площадью 300 м 2 , имела массу 30 т, энергопотребле­ние - 150 кВт. Машина работала с тактовой частотой 100 кГц и вы­полняла операцию сложения за 0,2 мс, а умножения - за 2,8 мс, что было на три порядка быстрее, чем это могли делать релейные машины. Быстро обнаружились и недостатки новой машины. По своей структуре ЭВМ ENIAC напоминала механические вычис­лительные машины: использовалась десятичная система; программа набиралась вручную на 40 наборных полях; на перенастройку ком­мутационных полей уходили недели. При пробной эксплуатации выяснилось, что надежность этой машины очень низка: поиск не­исправностей занимал до нескольких суток. Для ввода и вывода данных использовались перфоленты и перфокарты, магнитные лен­ты и печатающие устройства. В компьютерах I поколения была ре­ализована концепция хранимой программы. Компьютеры I поко­ления использовались для прогнозирования погоды, решения энер­гетических задач, задач военного характера и в других важных об­ластях.

II поколение компьютеров. Одним из самых важных достиже­ний, которые привели к революции в конструировании ЭВМ и в конечном счете к созданию персональных компьютеров, было изобретение транзистора в 1948 г. Транзистор, который является твердотельным электронным переключательным элементом (вен­тилем), занимает гораздо меньше места и потребляет значитель­но меньше энергии, выполняя ту же работу, что и лампа. Вычис­лительные системы, построенные на транзисторах, были намно­го компактнее, экономичнее и гораздо эффективней ламповых. Переход на транзисторы положил начало миниатюризации, ко­торая сделала возможным появление современных персональных ЭВМ (как, впрочем, и других радиотехнических устройств - ра­диоприемников, магнитофонов, телевизоров и т.д.). Для машин II поколения встала задача автоматизации программирования, по­скольку увеличивался разрыв между временем на разработку про­грамм и непосредственно временем счета. Второй этап развития вычислительной техники конца 50-х - начала 60-х годов XX в. характеризуется созданием развитых языков программирования (ал­гол, фортран, кобол) и освоением процесса автоматизации уп­равления потоком задач с помощью самой ЭВМ, т.е. разработкой операционных систем.

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

ГОУ ВПО «Уральский государственный экономический университет»

Кафедра экономики и права

Филиал УрГЭУ в г. Н. Тагил

Контрольная работа

по дисциплине:

«Информатика»

Вариант 8___

Тема: «История развития средств вычислительной техники»

Исполнитель:

студент гр. 1ЭКИП

Горбунова А.А.

Преподаватель:

Скороходов Б.А.

Введение………………………………………………………………………………..3

1 Этапы развития средств вычислительной техники………………………………..4

2 Характеристика поколений ЭВМ…………………………………………………...9

3 Роль средств вычислительной техники в жизни человека………………………13

Заключение……………………………………………………………………………14

Введение

Знание истории развития вычислительной техники, является неотъемлемым компонентом профессиональной компетентности будущего специалиста в области информационных технологий. Первые шаги автоматизации умственного труда относятся именно к вычислительной активности человека, который уже на самых ранних этапах своей цивилизации начал использовать средства инструментального счета.

При этом, следует иметь в виду, что хорошо зарекомендовавшие себя средства развития вычислительной техники используются человеком и в настоящее время для автоматизации различного рода вычислений.

Автоматизированные системы являются неотъемлемой частью любого бизнеса и производства. Практически все управленческие и технологические процессы в той или иной степени используют средства вычислительной техники. Всего лишь один компьютер может заметно повысить эффективность управления предприятием, при этом не создавая дополнительных проблем. Сегодня персональные компьютеры устанавливают на каждом рабочем месте и уже, как правило, никто не сомневается в их необходимости. Значительные объемы средств вычислительной техники и их особая роль в функционировании любого предприятия ставят перед руководством целый ряд новых задач.

В данной работе будет рассмотрена история развития средств вычислительной техники, которая поможет понять и углубиться в сущность и значение ЭВМ.

1 Этапы развития средств вычислительной техники

Существует несколько этапов развития средств вычислительной техники, которыми люди пользуются и в настоящее время.

Ручной этап развития средств вычислительной техники.

Ручной период автоматизации вычислений начался на заре человеческой цивилизации и базировался на использовании различных частей тела, в первую очередь, пальцев рук и ног.

Пальцевый счет уходит корнями в глубокую древность, встречаясь в том или ином виде у всех народов и в наши дни. Известные средневековые математики рекомендовали в качестве вспомогательного средства именно пальцевый счет, допускающий довольно эффективные системы счета. Фиксация результатов счета производилась различными способами: нанесение насечек, счетные палочки, узелки и др. Например, у народов доколумбовой Америки был весьма развит узелковый счет. Более того, система узелков выполняла также роль своего рода хроник и летописей, имея достаточно сложную структуру. Однако, использование ее требовало хорошей тренировки памяти.

Счет с помощью группировки и перекладывания предметов явился предшественником счета на абаке - наиболее развитом счетном приборе древности, сохранившимся до наших дней в виде различного типа счетов.

Абак явился первым развитым счетным прибором в истории человечества, основным отличием которого от предыдущих способов вычислений было выполнение вычислений по разрядам. Таким образом, использование абака уже предполагает наличие некоторой позиционной системы счисления, например, десятичной, троичной, пятеричной и др. Многовековой путь совершенствования абака привел к созданию счетного прибора законченной классической формы, используемого вплоть до эпохи расцвета клавишных настольных ЭВМ. Да еще и сегодня кое-где его можно встретить, помогающим в расчетных операциях. И только появление карманных электронных калькуляторов в 70-е годы нашего столетия создало реальную угрозу для дальнейшего использования русских, китайских и японских счетов - трех основных классических форм абака, сохранившихся до наших дней. При этом, последняя известная попытка усовершенствования русских счетов путем объединения их с таблицей умножения относится к 1921 г.

Хорошо приспособленный к выполнению операций сложения и вычитания, абак оказался недостаточно эффективным прибором для выполнения операций умножения и деления. Поэтому открытие логарифмов и логарифмических таблиц Джоном Непером в начале XVII века явилось следующим крупным шагом в развитии вычислительных систем ручного этапа. Впоследствии появляется целый ряд модификаций логарифмических таблиц. Однако, в практической работе использование логарифмических таблиц имеет ряд неудобств, поэтому Джон Непер в качестве альтернативного метода предложил специальные счетные палочки (названные впоследствии палочками Непера), позволявшие производить операции умножения и деления непосредственно над исходными числами. В основу данного метода Непер положил способ умножения решеткой.

Наряду с палочками Непер предложил счетную доску для выполнения операций умножения, деления, возведения в квадрат и извлечения квадратного корня в двоичной системе, предвосхитив тем самым преимущества такой системы счисления для автоматизации вычислений.

Логарифмы послужили основой создания замечательного вычислительного инструмента - логарифмической линейки, более 360 лет служащего инженерно-техническим работникам всего мира.

Механический этап развития вычислительной техники.

Развитие механики в XVII веке стало предпосылкой создания вычислительных устройств и приборов, использующих механический принцип вычислений. Такие устройства строились на механических элементах и обеспечивали автоматический перенос старшего разряда.

Первая механическая машина была описана в 1623 году Вильгельмом Шиккардом, реализована в единственном экземпляре и предназначалась для выполнения четырех арифметических операций над 6-разрядными числами.

Машина Шиккарда состояла из трех независимых устройств: суммирующего, множительного и записи чисел. Сложение производилось последовательным вводом слагаемых посредством наборных дисков, а вычитание - последовательным вводом уменьшаемого и вычитаемого. Вводимые числа и результат сложения и вычитания отображались в окошках считывания. Для выполнения операции умножения использовалась идея умножения решеткой. Третья часть машины использовалась для записи числа длиною не более 6 разрядов.

В машине Блеза Паскаля использовалась более сложная схема переноса старших разрядов, в дальнейшем редко используемая; но построенная в 1642 году первая действующая модель машины, а затем серия из 50 машин способствовали достаточно широкой известности изобретения и формированию общественного мнения о возможности автоматизации умственного труда.

Первый арифмометр, позволяющий производить все четыре арифметических операции, был создан Готфридом Лейбницем в результате многолетнего труда. Венцом этой работы стал арифмометр Лейбница, позволяющий использовать 8-разрядное множимое и 9-разрядный множитель с получением 16-разрядного произведения.

Особое место среди разработок механического этапа развития вычислительной техники занимают работы Чарльза Бэббиджа, с полным основанием считающегося родоначальником и идеологом современной вычислительной техники. Среди работ Бэббиджа явно просматриваются два основных направления: разностная и аналитическая вычислительные машины.

Проект разностной машины был разработан в 20-х годах XIX века и предназначался для табулирования полиномиальных функций методом конечных разностей. Основным стимулом в данной работе была настоятельная необходимость в табулировании функций и проверке существующих математических таблиц, изобилующих ошибками.

Второй проект Бэббиджа - аналитическая машина, использующая принцип программного управления и явившуюся предшественницей современных ЭВМ. Данный проект был предложен в 30-е годы XIX века, а в 1843 году Алой Лавлейс для машины Бэббиджа была написана первая в мире достаточно сложная программа вычисления чисел Бернулли.

Чарльз Бэббидж в своей машине использовал механизм, аналогичный механизму ткацкого станка Жаккарда, использующему специальные управляющие перфокарты. По идее Бэббиджа управление должно осуществляться парой жакардовских механизмов с набором перфокарт в каждом.

Бэббидж имел удивительно современные представления о вычислительных машинах, однако имевшиеся в его распоряжении технические средства намного отставали от его представлений.

Электромеханический этап развития вычислительной техники.

Электромеханический этап развития вычислительной техники явился наименее продолжительным и охватывает всего около 60 лет. Предпосылками создания проектов данного этапа явились как необходимость проведения массовых расчетов (экономика, статистика, управление и планирование, и др.), так и развитие прикладной электротехники (электропривод и электромеханические реле), позволившие создавать электромеханические вычислительные устройства.

Классическим типом средств электромеханического этапа был счетно-аналитический комплекс, предназначенный для обработки информации на перфокарточных носителях.

Первый счетно-аналитический комплекс был создан в США Германом Холлеритом в 1887 году и состоял из: ручного перфоратора, сортировочной машины и табулятора. Основным назначением комплекса являлась статистическая обработка перфокарт, а также механизации бухучета и экономических задач. В 1897 году Холлерит организовал фирму, которая в дальнейшем стала называться IBM.

Развивая работы Г. Холлерита, в ряде стран разрабатывается и производится ряд моделей счетно-аналитических комплексов, из которых наиболее популярными и массовыми были комплексы фирмы IBM, фирмы Ремингтон и фирмы Бюль.

Заключительный период (40-е годы XX века) электромеханического этапа развития вычислительной техники характеризуется созданием целого ряда сложных релейных и релейно-механических систем с программным управлением, характеризующихся алгоритмической универсальностью и способных выполнять сложные научно-технические вычисления в автоматическом режиме со скоростями, на порядок превышающими скорость работы арифмометров с электроприводом.

Конрад Цузе явился пионером создания универсальной вычислительной машины с программным управлением и хранением информации в запоминающем устройстве. Однако его первая модель Z-1 (положившая начало серии Z-машин) идейно уступала конструкции Бэббиджа - в ней не предусматривалась условная передача управления. Также, в будущем, были разработаны модели Z-2 и Z-3.

Последним крупным проектом релейной вычислительной техники следует считать построенную в 1957 году в СССР релейную вычислительную машину РВМ-1 и эксплуатировавшуюся до конца 1964 года в основном для решения экономических задач.

Электронный этап развития вычислительной техники.

В силу физико-технической природы релейная вычислительная техника не позволяла существенно повысить скорость вычислений; для этого потребовался переход на электронные безинерционные элементы высокого быстродействия.

Первой ЭВМ можно считать английскую машину Colossus, созданную в 1943 году при участии Алана Тьюринга. Машина содержала около 2000 электронных ламп и обладала достаточно высоким быстродействием, однако была узкоспециализированной.

Первой ЭВМ принято считать машину ENIAC (Electronic Numerical Integrator And Computer), созданную в США в конце 1945 года. Первоначально предназначенная для решения задач баллистики, машина оказалась универсальной, т.е. способной решать различные задачи.

Еще до начала эксплуатации ENIAC Джона Моучли и Преспера Эккерт по заказу военного ведомства США приступили к проекту над новым компьютером EDVAC (Electronic Discrete Automatic Variable Computer), который был совершеннее первого. В этой машине была предусмотрена большая память (на 1024 44-битных слов; к моменту завершения была добавлена вспомогательная память на 4000 слов для данных), предназначенная как для данных, так и для программы.

Компьютер EDSAC положил начало новому этапу развития вычислительной техники - первому поколению универсальных ЭВМ.

2 Характеристика поколений ЭВМ

Начиная с 1950 года, каждые 7-10 лет кардинально обновлялись конструктивно-технологические и программно-алгоритмические принципы построения и использования ЭВМ. В связи с этим правомерно говорить о поколениях вычислительных машин. Условно каждому поколению можно отвести 10 лет.

Первое поколение ЭВМ 1950-1960-е годы

Логические схемы создавались на дискретных радиодеталях и электронных вакуумных лампах с нитью накала. В оперативных запоминающих устройствах использовались магнитные барабаны, акустические ультразвуковые ртутные и электромагнитные линии задержки, электронно-лучевые трубки. В качестве внешних запоминающих устройств применялись накопители на магнитных лентах, перфокартах, перфолентах и штекерные коммутаторы.

Программирование работы ЭВМ этого поколения выполнялось в двоичной системе счисления на машинном языке, то есть программы были жестко ориентированы на конкретную модель машины и "умирали" вместе с этими моделями.

В середине 1950-х годов появились машинно-ориентированные языки типа языков символического кодирования (ЯСК), позволявшие вместо двоичной записи команд и адресов использовать их сокращенную словесную (буквенную) запись и десятичные числа.

ЭВМ, начиная от UNIVAC и заканчивая БЭСМ-2 и первыми моделями ЭВМ "Минск" и "Урал", относятся к первому поколению вычислительных машин.

Второе поколение ЭВМ: 1960-1970-е годы

Логические схемы строились на дискретных полупроводниковых и магнитных элементах. В качестве конструктивно-технологической основы использовались схемы с печатным монтажом. Широко стал использоваться блочный принцип конструирования машин, который позволяет подключать к основным устройствам большое число разнообразных внешних устройств, что обеспечивает большую гибкость использования компьютеров. Тактовые частоты работы электронных схем повысились до сотен килогерц.

Стали применяться внешние накопители на жестких магнитных дисках и на флоппи-дисках - промежуточный уровень памяти между накопителями на магнитных лентах и оперативной памятью.

В 1964 году появился первый монитор для компьютеров - IBM 2250. Это был монохромный дисплей с экраном 12 х 12 дюймов и разрешением 1024 х 1024 пикселов. Он имел частоту кадровой развертки 40 Гц.

Создаваемые на базе компьютеров системы управления потребовали от ЭВМ более высокой производительности, а главное - надежности. В компьютерах стали широко использоваться коды с обнаружением и исправлением ошибок, встроенные схемы контроля.

В машинах второго поколения были впервые реализованы режимы пакетной обработки и телеобработки информации.

Первой ЭВМ, в которой частично использовались полупроводниковые приборы вместо электронных ламп, была машина, созданная в 1951 году.

В начале 60-х годов полупроводниковые машины стали производиться и в СССР.

Третье поколение ЭВМ: 1970-1980-е годы

Логические схемы ЭВМ 3-го поколения уже полностью строились на малых интегральных схемах. Тактовые частоты работы электронных схем повысились до единиц мегагерц. Снизились напряжения питания (единицы вольт) и потребляемая машиной мощность. Существенно повысились надежность и быстродействие ЭВМ.

В оперативных запоминающих устройствах использовались миниатюрнее ферритовые сердечники, ферритовые пластины и магнитные пленки с прямоугольной петлей гистерезиса. В качестве внешних запоминающих устройств широко стали использоваться дисковые накопители.

Появились еще два уровня запоминающих устройств: сверхоперативные запоминающие устройства на триггерных регистрах, имеющие огромное быстродействие, но небольшую емкость (десятки чисел), и быстродействующая кэш-память.

Начиная с момента широкого использования интегральных схем в компьютерах, технологический прогресс в вычислительных машинах можно наблюдать, используя широко известный закон Мура. Один из основателей компании Intel Гордон Мур в 1965 году открыл закон, согласно которому количество транзисторов в одной микросхеме удваивается через каждые 1,5 года.

Ввиду существенного усложнения как аппаратной, так и логической структуры ЭВМ 3-го поколения часто стали называть системами.

В вычислительных машинах третьего поколения значительное внимание уделяется уменьшению трудоемкости программирования, эффективности исполнения программ в машинах и улучшению общения оператора с машиной. Это обеспечивается мощными операционными системами, развитой системой автоматизации программирования, эффективными системами прерывания программ, режимами работы с разделением машинного времени, режимами работы в реальном времени, мультипрограммными режимами работы и новыми интерактивными режимами общения. Появилось и эффективное видеотерминальное устройство общения оператора с машиной - видеомонитор, или дисплей.

Большое внимание уделено повышению надежности и достоверности функционирования ЭВМ и облегчению их технического обслуживания. Достоверность и надежность обеспечиваются повсеместным использованием кодов с автоматическим обнаружением и исправлением ошибок (корректирующие коды Хеммин-га и циклические коды).

Четвертое поколение ЭВМ: 1980-1990-е годы

Революционным событием в развитии компьютерных технологий четвертго поколения машин было создание больших и сверхбольших интегральных схем, микропроцессора и персонального компьютера.

Логические интегральные схемы в компьютерах стали создаваться на основе униполярных полевых CMOS-транзисторов с непосредственными связями, работающими с меньшими амплитудами электрических напряжений.

Пятое поколение ЭВМ: 1990-настоящее время

Кратко основную концепцию ЭВМ пятого поколения можно сформулировать следующим образом:

Компьютеры на сверхсложных микропроцессорах с параллельно-векторной структурой, одновременно выполняющих десятки последовательных инструкций программы.

Компьютеры с многими сотнями параллельно работающих процессоров, позволяющих строить системы обработки данных и знаний, эффективные сетевые компьютерные системы.

Шестое и последующие поколения ЭВМ

Электронные и оптоэлектронные компьютеры с массовым параллелизмом, нейронной структурой, с распределенной сетью большого числа (десятки тысяч) микропроцессоров, моделирующих архитектуру нейронных биологических систем.

3 Роль средств вычислительной техники в жизни человека.

Роль информатики в целом в современных условиях постоянно возрастает. Деятельность как отдельных людей, так и целых организаций все в большей степени зависит от их информированности и способности эффективно использовать имеющуюся информацию. Прежде чем предпринять какие-то действия, необходимо провести большую работу по сбору и переработке информации, ее осмыслению и анализу. Отыскание рациональных решений в любой сфере требует обработки больших объемов информации, что подчас невозможно без привлечения специальных технических средств. Внедрение компьютеров, современных средств переработки и передачи информации в различные индустрии послужило началом процесса, называемого информатизацией общества. Современное материальное производство и другие сферы деятельности все больше нуждаются в информационном обслуживании, переработке огромного количества информации. Информатизация на основе внедрения компьютерных и телекоммуникационных технологий является реакцией общества на потребность в существенном увеличении производительности труда в информационном секторе общественного производства, где сосредоточено более половины трудоспособного населения.

Информационные технологии вошли во все сферы нашей жизни. Компьютер является средством повышения эффективности процесса обучения, участвует во всех видах человеческой деятельности, незаменим для социальной сферы. Информационные технологии - это аппаратно-программные средства, базирующиеся на использовании вычислительной техники, которые обеспечивают хранение и обработку образовательной информации, доставку ее обучаемому, интерактивное взаимодействие студента с преподавателем или педагогическим программным средством, а также тестирование знаний студента.

Можно предположить, что эволюция технологии в общем и целом продолжает естественную эволюцию. Если освоение каменных орудий помогло сформироваться человеческому интеллекту, металлические повысили производительность физического труда (настолько, что отдельная прослойка общества освободилась для интеллектуальной деятельности), машины механизировали физический труд, то информационная технология призвана освободить человека от рутинного умственного труда, усилить его творческие возможности.

Заключение

Жить в XXI веке образованным человеком можно, только хорошо владея информационными технологиями. Ведь деятельность людей все в большей степени зависит от их информированности, способности эффективно использовать информацию. Для свободной ориентации в информационных потоках современный специалист любого профиля должен уметь получать, обрабатывать и использовать информацию с помощью компьютеров, телекоммуникаций и других средств связи. Об информации начинают говорить как о стратегическом ресурсе общества, как о ресурсе, определяющем уровень развития государства.

С помощью изучения истории развития средств вычислительной техники можно познать все строение и значение ЭВМ в жизни человека. Это поможет лучше в них разбираться и с легкостью воспринимать новые прогрессирующие технологии, ведь не нужно забывать о том, что компьютерные технологии прогрессируют, почти, каждый день и если не разобраться в строении машин, которые были много лет назад, трудно будет преодолеть нынешнее поколение.

В представленной работе удалось показать с чего начиналось и чем заканчивается развитие средств вычислительной техники и какую важную роль играют они для людей в настоящее время.

Технические средства реализации информационных процессов

История развития ВТ имеет несколько периодов: механический, электромеханический и электронный.

Для проведения вычислений в Древнем Вавилоне (около 3 тыс. лет до н.э.), а затем в Древней Греции и Древнем Риме (IV век до н.э.) использовали счетные доски под названием абак . Доска абака представляла собой глиняную пластину с углублениями, в которые раскладывали камушки. В дальнейшем углубления были заменены проволокой с нанизанными косточками (прообраз счет).

В 17 веке в Европе ученые-математики (В. Шиккард (1623 ᴦ.) и Блез Паскаль (1642 ᴦ.), Г. Лейбниц (1671 ᴦ.)) изобретают механические машины , способные автоматически выполнять арифметические действия (прообраз арифмометра).

В первой трети 19 века английский математик Ч. Бэббидж разработал проект программируемого автоматического вычислительного механического устройства, известного как ʼʼаналитическая машинаʼʼ Бэббиджа. Меценат проекта графиня Ада Августа Лавлейс была программистом этой ʼʼаналитической машиныʼʼ.

Г. Холлерит в 1888 ᴦ. создал электромеханическую машину, которая состояла из перфоратора, сортировщика перфокарт и суммирующей машины, названной табулятором. Впервые эта машина использовалась в США при обработке результатов переписи населœения.

Скорость вычислений в механических и электромеханических машинах была ограничена, в связи с этим в 1930-х гᴦ. начались разработки электронных вычислительных машин (ЭВМ), элементной базой которых стала трехэлектродная вакуумная лампа.

В 1946 ᴦ. в университете ᴦ. Пенсильвания (США) была построена электронная вычислительная машина, получившая название UNIAK. Машина весила 30 т, занимала площадь 200 кв.м., содержала 18000 ламп. Программирование велось путем установки переключателœей и коммутации разъемов. В результате на создание и выполнение даже самой простой программы требовалось очень много времени. Сложности в программировании на UNIAK натолкнули Джона фон Неймана, бывшего консультантом проекта͵ на разработку новых принципов построения архитектуры ЭВМ.

В СССР первая ЭВМ была создана в 1948 ᴦ.

Историю развития ЭВМ принято рассматривать по поколениям.

Первое поколение (1946-1960) - ϶ᴛᴏ время становления архитектуры машин фон-неймановского типа, построенных на электронных лампах с быстродействием 10-20 тыс.оп/с. ЭВМ первого поколения были громоздкими и ненадежными. программные средства были представлены машинными языками.

В 1950 ᴦ. в СССР была запущена в эксплуатацию МЭСМ (малая электронная счетная машина), а еще через два года появилась большая электронно-счетная машина (10 тыс.оп/с).

Второе поколение (1960 – 1964) - ϶ᴛᴏ машины, построенные на транзисторах с быстродействием до сотен тысяч операций в секунду. Для организации внешней памяти стали использоваться магнитные барабаны, а для основной памяти – магнитные сердечники. В это же время были разработаны алгоритмические языки высокого уровня, как Алгол, Кобол, Фортран, которые позволили составлять программы, не учитывая тип машины. Первой ЭВМ с отличительными чертами второго поколения была IBM 704.

Третье поколение (1964 – 1970) характеризуются тем, что вместо транзисторов стали использоваться интегральные схемы (ИС) и полупроводниковая память.

Большинство машин, относящихся к третьему поколению по своим особенностям, входили в состав серии (семейства) машин ʼʼSystem/360ʼʼ (аналог ЕС ЭВМ), выпущенной фирмой IBM в серединœе 60-х гᴦ. Машины этой серии имели единую архитектуру и были программно совместимыми.

В данный время в СССР появился первый суперкомпьютер БЭСМ 6, который имел производительность 1 млн. оп/с.

Четвертое поколение (1970 – 1980) - ϶ᴛᴏ машины, построенные на больших интегральных схемах (БИС). Такие схемы содержат до нескольких десятков тысяч элементов в кристалле. ЭВМ этого поколения выполняют десятки и сотни миллионов операций в секунду.

В 1971 ᴦ. появился первый в мире четырехразрядный микропроцессор Intel 4004, содержащий 2300 транзисторов на кристалле, а еще через год - восьмиразрядный процессор Intel 8008. Создание микропроцессоров послужило основой для разработки персонального компьютера (ПК), ᴛ.ᴇ. устройства, выполняющего те же функции, что и большой компьютер, но рассчитанного на работу одного пользователя.

1973 ᴦ. фирма Xerox создала первый прототип персонального компьютера.

1974 ᴦ. появился первый коммерчески распространяемый персональный компьютер Альтаир-8800, для которого в конце 1975 ᴦ. Пол Ален и Билл Гейтс написали интерпретатор языка Бэйсик.

В августе 1981 ᴦ. фирма IBM выпустила компьютер IBM PC. В качестве основного микропроцессора использовали новейший тогда 16-разрядный микропроцессор Intel 8088. ПК был построен в соответствии с принципами открытой архитектуры. Пользователи получили возможность самостоятельно модернизировать свои компьютеры и оснащать их дополнительными устройствами различных производителœей. Через один – два года компьютер IBM PC занял ведущее место на рынке, вытеснив модели 8-разрядных компьютеров.

Сегодня существует множество разновидностей ЭВМ, которые классифицируются: по элементной базе, принципам действия, стоимости, размерам, производительности, назначению и областям применения.

СуперЭВМ и большие ЭВМ (мэйнфреймы) – применяются для проведения сложных научных расчетов или для обработки больших потоков информации на крупных предприятиях. Οʜᴎ, как правило, являются главными компьютерами корпоративных вычислительных сетей.

Мини - и микро ЭВМ применяются для создания систем управления крупных и средних предприятий.

Персональные компьютеры предназначены для конечного пользователя. В свою очередь ПК подразделяют на настольные (desktop), портативные (notebook) и карманные (palmtop) модели.

История развития вычислительной техники - понятие и виды. Классификация и особенности категории "История развития вычислительной техники" 2017, 2018.

  • - История развития вычислительной техники

    Потребность в автоматизации обработки данных, в том числе вычислений, возникла очень давно. Считается, что исторически первым и, соответственно, простейшим счетным устройством был абак, который относится к ручным приспособлениям для счета. Абак – счётная доска,... .


  • - История развития вычислительной техники

    История развития вычислительной техники уходит своими корнями далеко в прошлое. Еще в XIV в. Леонардо да Винчи разработал эскиз 13-разрядного суммирующего устройства. Действующий образец построил в 1642 г. знаменитый французский физик, математик и инженер Блез Паскаль. Его... .


  • - КРАТКАЯ ИСТОРИЯ РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ.

    1623г. Первая «считающая машина», созданная Уильямом Шикардом. Это довольно громоздкий аппарат мог применять простые арифметические действия (сложение, вычитание) с 7-значными числами. 1644г. «Вычислитель» Блеза Паскаля – первая по настоящему популярная считающая машина,...

  • Лекция № 10. ИСТОРИЯ РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

    1.1. НАЧАЛЬНЫЙ ЭТАП РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

    Потребность в автоматизации обработки данных, в том числе вычислений, возникла очень давно. Считается, что исторически первым и, соответственно, простейшим счетным устройством был абак, который относится к ручным приспособлениям для счета.

    Доска разделялась на бороздки. Одна бороздка соответствовала единицам, другая – десяткам и т.д. Если в какой-то бороздке при счете набиралось более 10 камешков, их снимали и добавляли один камешек в следующем разряде. В странах Дальнего Востока был распространён китайский аналог абака – суан-пан (в основе счета лежала не десятка, а пятерка), в России – счёты .

    Абак

    Суан-пан. Положено 1930

    Счеты. Положено 401,28

    Первой дошедшей до нас попыткой решить задачу по созданию машины умеющей складывать многоразрядные целые числа был эскиз 13-разрядного суммирующего устройства разработанный Леонардо да Винчи около 1500 г.

    В 1642 году Блез Паскаль изобрел устройство, механически выполняющее сложение чисел. Ознакомившись с трудами Паскаля и изучив его арифметическую машину, Готфрид Вильгельм Лейбниц внес в нее значительные усовершенствования, и в 1673 году сконструировал арифмометр, позволяющий механически выполнять четыре арифметических операции. Начиная с 19 века, арифмометры получили очень широкое распространение и применение. На них выполняли даже очень сложные расчеты, например, расчеты баллистических таблиц для артиллерийских стрельб. Существовала специальная профессия- счетчик.

    Несмотря на явный прогресс по сравнению с абаком и подобными ему приспособлениями для ручного счета, данные механические вычислительные устройства требовали постоянного участия человека в процессе вычислений. Человек, производя вычисления на таком устройстве, сам управляет его работой, определяет последовательность выполняемых операций.

    Мечтой изобретателей вычислительной техники было создание считающего автомата, который бы без вмешательства человека производил расчеты по заранее составленной программе.

    В первой половине 19 века английский математик Чарльз Бэббидж попытался создать универсальное вычислительное устройство – Аналитическую машину , которая должна была выполнять арифметические операции без участия человека. В Аналитическую машину были заложены принципы, ставшие фундаментальными для вычислительной техники, и были предусмотрены все основные компоненты, имеющиеся в современном компьютере. Аналитическая машина Бэббиджа должна была состоять из следующих частей:

    1. «Фабрика» – устройство, в котором производиться все операции по обработке всех видов данных (АЛУ).

    2. «Контора» – устройство, обеспечивающие организацию выполнения программы обработки данных и согласованную работу всех узлов машины в ходе этого процесса (УУ).

    3. «Склад» – устройство, предназначенное для хранения исходных данных, промежуточных величин и результатов обработки данных (ЗУ, или просто память).

    4. Устройства, способные преобразовывать данные в форму, доступную компьютеру (кодирование). Устройства ввода.

    5. Устройства, способные преобразовывать результаты обработки данных в форму, понятную человеку. Устройства вывода.

    В окончательном варианте машины у нее было три устройства ввода с перфокарт, с которых считывались программа и данные, подлежащие обработке.

    Бэббидж не смог довести работу до конца - это оказалось слишком сложно на основе механической техники того времени. Однако он разработал основные идеи, и в 1943 году американец Говард Эйкен на основе уже техники 20 века – электромеханических реле – смог построить на одном из предприятий фирмы IBM такую машину под названием «Марк-1». Для представления чисел в ней были использованы механические элементы (счетные колеса), для управления – электромеханические.

    1.2. НАЧАЛО СОВРЕМЕННОЙ ИСТОРИИ ЭЛЕКТРОННОЙ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

    Подлинная революция в вычислительной технике произошла в связи с применением электронных устройств. Работа над ними началась в конце 30-х годов одновременно в США, Германии, Великобритании и СССР. К этому времени электронные лампы, ставшие технической основой устройств обработки и хранения цифровой информации, уже широчайшим образом применялись в радиотехнических устройствах.

    Огромный вклад в теорию и практику создания электронной вычислительной техники на начальном этапе ее развития внес один из крупнейших американских математиков Джон фон Нейман. В историю науки навсегда вошли «принципы фон Неймана». Совокупность этих принципов породила классическую (фон-неймановскую) архитектуру ЭВМ. Один из важнейших принципов - принцип хранимой программы - требует, чтобы программа закладывалась в память машины так же, как в нее закладывается исходная информация. Первая ЭВМ с хранимой программой (EDSAC ) была построена в Великобритании в 1949 г.

    В нашей стране вплоть до 70-х годов создание ЭВМ велось почти полностью самостоятельно и независимо от внешнего мира (да и сам этот «мир» был почти полностью зависим от США). Дело в том, что электронная вычислительная техника с самого момента своего первоначального создания рассматривалась как сверхсекретный стратегический продукт, и СССР приходилось разрабатывать и производить ее самостоятельно. Постепенно режим секретности смягчался, но и в конце 80-х годов наша страна могла покупать за рубежом лишь устаревшие модели ЭВМ (а самые современные и мощные компьютеры ведущие производители - США и Япония - и сегодня разрабатывают и производят в режиме секретности).

    Первая отечественная ЭВМ - МЭСМ («малая электронно-счетная машина») -была создана в 1951 г. под руководством Сергея Александровича Лебедева, крупнейшего советского конструктора вычислительной техники. Рекордной среди них и одной из лучших в мире для своею времени была БЭСМ-6 («большая электронно-счетная машина, 6-я модель»), созданная в середине 60-х годов и долгое время бывшая базовой машиной в обороне, космических исследованиях, научно-технических исследованиях в СССР. Кроме машин серии БЭСМ выпускались и ЭВМ других серий - «Минск», «Урал», М-20, «Мир» и другие.

    С началом серийного выпуска ЭВМ начали условно делить по поколениям; соответствующая классификация изложена ниже.

    1.3. ПОКОЛЕНИЯ ЭВМ

    В истории вычислительной техники существует своеобразная периодизация ЭВМ по поколениям. В ее основу первоначально был положен физико-технологический принцип: машину относят к тому или иному поколению в зависимости от используемых в ней физических элементов или технологии их изготовления. Границы поколений во времени размыты, так как в одно и то же время выпускались машины совершенно разного уровня. Когда приводят даты, относящиеся к поколениям, то скорее всего имеют в виду период промышленного производства; проектирование велось существенно раньше, а встретить в эксплуатации весьма экзотические устройства можно и сегодня.

    В настоящее время физико-технологический принцип не является единственным при определении принадлежности той или иной ЭВМ к поколению. Следует считаться и с уровнем программного обеспечения, с быстродействием, другими факторами, основные из которых сведены в прилагаемую табл. 4.1.

    Следует понимать, что разделение ЭВМ по поколениям весьма относительно. Первые ЭВМ, выпускавшиеся до начала 50-х годов, были «штучными» изделиями, на которых отрабатывались основные принципы; нет особых оснований относить их к какому-либо поколению. Нет единодушия и при определении признаков пятого поколения. В середине 80-х годов считалось, что основной признак этого (будущего) поколения - полновесная реализация принципов искусственного интеллекта . Эта задача оказалась значительно сложнее, чем виделось в то время, и ряд специалистов снижают планку требований к этому этапу (и даже утверждают, что он уже состоялся). В истории науки есть аналоги этого явления: так, после успешного запуска первых атомных электростанций в середине 50-х годов ученые объявили, что запуск многократно более мощных, дающих дешевую энергию, экологически безопасных термоядерных станций, вот-вот произойдет; однако, они недооценили гигантские трудности на этом пути,так как термоядерных электростанций нет и по сей день.

    В то же время среди машин четвертого поколения разница чрезвычайно велика, и поэтому в табл. 4.1 соответствующая колонка разделена на на две: А и Б. Указанные в верхней строчке даты соответствуют первым годам выпуска ЭВМ. Многие понятия, отраженные в таблице, будут обсуждаться в последующих разделах учебника; здесь ограничимся кратким комментарием.

    Чем младше поколение, тем отчетливее классификационные признаки. ЭВМ первого, второго и третьего поколений сегодня - в лучшем случае музейные экспонаты.

    Какие компьютеры относятся в первому поколению?

    К первому поколению обычно относят машины, созданные на рубеже 50-х годов. В их схемах использовались электронные лампы . Эти компьютеры были огромными, неудобными и слишком дорогими машинами , которые могли приобрести только крупные корпорации и правительства. Лампы потребляли огромное количество электроэнергии и выделяли много тепла.

    Набор команд был небольшой, схема арифметико-логического устройства и устройства управления достаточно проста, программное обеспечение практически отсутствовало. Показатели объема оперативной памяти и быстродействия были низкими. Для ввода-вывода использовались перфоленты, перфокарты, магнитные ленты и печатающие устройства.

    Быстродействие порядка 10-20 тысяч операций в секунду.

    Но это только техническая сторона. Очень важна и другая - способы использования компьютеров, стиль программирования, особенности математического обеспечения.

    Программы для этих машин писались на языке конкретной машины . Математик, составивший программу, садился за пульт управления машины, вводил и отлаживал программы и производил по ним счет. Процесс отладки был наиболее длительным по времени.

    Несмотря на ограниченность возможностей, эти машины позволили выполнить сложнейшие расчёты, необходимые для прогнозирования погоды, решения задач атомной энергетики и др.

    Опыт использования машин первого поколения показал, что существует огромный разрыв между временем, затрачиваемым на разработку программ, и временем счета.

    Отечественные машины первого поколения: МЭСМ (малая электронная счётная машина), БЭСМ, Стрела, Урал, М-20.

    Какие компьютеры относятся ко второму поколению?

    Второе поколение компьютерной техники - машины, сконструированные примерно в 1955-65 гг. Характеризуются использованием в них как электронных ламп , так и дискретных транзисторных логических элементов . Их оперативная память была построена на магнитных сердечниках. В это время стал расширяться диапазон применяемого оборудования ввода-вывода, появились высокопроизводительные устройства для работы с магнитными лентами, магнитные барабаны и первые магнитные диски .

    Быстродействие - до сотен тысяч операций в секунду, ёмкость памяти - до нескольких десятков тысяч слов.

    Появились так называемые языки высокого уровня , средства которых допускают описание всей необходимой последовательности вычислительных действий в наглядном, легко воспринимаемом виде .

    Программа, написанная на алгоритмическом языке, непонятна компьютеру, воспринимающему только язык своих собственных команд. Поэтому специальные программы, которые называются трансляторами , переводят программу с языка высокого уровня на машинный язык.

    Появился широкий набор библиотечных программ для решения разнообразных математических задач. Появились мониторные системы , управляющие режимом трансляции и исполнения программ. Из мониторных систем в дальнейшем выросли современные операционные системы.

    Таким образом, операционная система является программным расширением устройства управления компьютера .

    Для некоторых машин второго поколения уже были созданы операционные системы с ограниченными возможностями.

    Машинам второго поколения была свойственна программная несовместимость , которая затрудняла организацию крупных информационных систем. Поэтому в середине 60-х годов наметился переход к созданию компьютеров, программно совместимых и построенных на микроэлектронной технологической базе.

    В чем особенности компьютеров третьего поколения?

    Машины третьего поколения созданы примерно после 60-x годов. Поскольку процесс создания компьютерной техники шел непрерывно, и в нём участвовало множество людей из разных стран, имеющих дело с решением различных проблем, трудно и бесполезно пытаться установить, когда "поколение" начиналось и заканчивалось. Возможно, наиболее важным критерием различия машин второго и третьего поколений является критерий, основанный на понятии архитектуры.

    Машины третьего поколения - это семейства машин с единой архитектурой, т.е. программно совместимых. В качестве элементной базы в них используются интегральные схемы, которые также называются микросхемами.

    Машины третьего поколения имеют развитые операционные системы. Они обладают возможностями мультипрограммирования, т.е. одновременного выполнения нескольких программ. Многие задачи управления памятью, устройствами и ресурсами стала брать на себя операционная система или же непосредственно сама машина.

    Примеры машин третьего поколения - семейства IBM-360, IBM-370, ЕС ЭВМ (Единая система ЭВМ), СМ ЭВМ (Семейство малых ЭВМ) и др.

    Быстродействие машин внутри семейства изменяется от нескольких десятков тысяч до миллионов операций в секунду. Ёмкость оперативной памяти достигает нескольких сотен тысяч слов.

    Что характерно для машин четвёртого поколения?

    Четвёртое поколение - это теперешнее поколение компьютерной техники, разработанное после 1970 года.

    Наиболее важный в концептуальном отношении критерий, по которому эти компьютеры можно отделить от машин третьего поколения, состоит в том, что машины четвёртого поколения проектировались в расчете на эффективное использование современных высокоуровневых языков и упрощение процесса программирования для конечного пользователя.

    В аппаратурном отношении для них характерно широкое использование интегральных схем в качестве элементной базы, а также наличие быстродействующих запоминающих устройств с произвольной выборкой ёмкостью в десятки мегабайт.

    C точки зрения структуры машины этого поколения представляют собой многопроцессорные и многомашинные комплексы, работающие на общую память и общее поле внешних устройств. Быстродействие составляет до нескольких десятков миллионов операций в секунду, ёмкость оперативной памяти порядка 1 - 64 Мбайт.

    Для них характерны:

    • применение персональных компьютеров;
    • телекоммуникационная обработка данных;
    • компьютерные сети;
    • широкое применение систем управления базами данных;
    • элементы интеллектуального поведения систем обработки данных и устройств.

    Какими должны быть компьютеры пятого поколения?

    Разработка последующих поколений компьютеров производится на основе больших интегральных схем повышенной степени интеграции , использования оптоэлектронных принципов (лазеры , голография ).

    Развитие идет также по пути "интеллектуализации" компьютеров, устранения барьера между человеком и компьютером. Компьютеры будут способны воспринимать информацию с рукописного или печатного текста, с бланков, с человеческого голоса, узнавать пользователя по голосу, осуществлять перевод с одного языка на другой.

    В компьютерах пятого поколения произойдёт качественный переход от обработки данных к обработке знаний .

    Архитектура компьютеров будущего поколения будет содержать два основных блока. Один из них - это традиционный компьютер. Но теперь он лишён связи с пользователем. Эту связь осуществляет блок, называемый термином "интеллектуальный интерфейс" . Его задача - понять текст, написанный на естественном языке и содержащий условие задачи, и перевести его в работающую программу для компьютера.

    Будет также решаться проблема децентрализации вычислений с помощью компьютерных сетей, как больших, находящихся на значительном расстоянии друг от друга, так и миниатюрных компьютеров, размещённых на одном кристалле полупроводника.

    Поколения ЭВМ

    Показатель

    Поколения ЭВМ

    Первое

    1951-1954

    Второе

    1958-I960

    Третье

    1965-1966

    Четвертое

    Пятое

    1976-1979

    1985-?

    Элементная база процессора

    Электронные

    лампы

    Транзисторы

    Интграль-ные схемы

    (ИС)

    Большие ИС (БИС)

    СвербольшиеИС

    (СБИС)

    Оптоэлек-троника

    Криоэлек-троника

    Элементная база ОЗУ

    Электронно-лучевые трубки

    Феррито-вые сердечники

    Ферритовые

    сердечники

    БИС

    СБИС

    СБИС

    Максмальная емкость ОЗУ, байт

    10 2

    10 1

    10 4

    10 5

    10 7

    10 8 (?)

    Максимальное быстродействие процессора (оп/с)

    10 4

    10 6

    10 7

    10 8

    10 9

    Многопро-цессорность

    10 12 ,

    Многопро-цессорность

    Языки программирования

    Машинный код

    Ассемблер

    Процедурные языки высокого уровня (ЯВУ)

    Новые

    процедурные ЯВУ

    Непроце-дурные ЯВУ

    Новые непрцедур-ные ЯВУ

    Средства связи пользователя с ЭВМ

    Пульт управления и перфокарты

    Перфокарты и перфоленты

    Алфавитно- цифровой терминал

    Монохром- ный графиче- ский дисплей, клавиатура

    Цветной + графический дисплей, клавиатура, «мышь» и др.

    Первым устройством, предназначенным для облегчения счета, были счеты. С помощью костяшек счетов можно было совершать операции сложения и вычитания и несложные умножения.

    1642 г. - французский математик Блез Паскаль сконструировал первую механическую счетную машину «Паскалина», которая могла механически выполнять сложение чисел.

    1673 г. — Готфрид Вильгельм Лейбниц сконструировал арифмометр, позволяющий механически выполнять четыре арифметических действия.

    Первая половина XIX в. - английский математик Чарльз Бэббидж попытался построить универсальное вычислительное устройство, то есть компьютер. Бэббидж называл его аналитической машиной. Он определил, что компьютер должен содержать память и управляться с помощью программы. Компьютер по Бэббиджу — это механическое устройство, программы для которого задаются посредством перфокарт - карт из плотной бумаги с информацией, наносимой с помощью отверстий (они в то время уже широко употреблялись в ткацких станках).

    1941 г. — немецкий инженер Конрад Цузе построил небольшой компьютер на основе нескольких электромеханических реле.

    1943 г. — в США на одном из предприятий фирмы IBM Говард Эйкен создал компьютер под названием «Марк-1». Он позволял проводить вычисления в сотни раз быстрее, чем вручную (с помощью арифмометра), и использовался для военных расчетов. В нем использовалось сочетание электрических сигналов и механических приводов. «Марк-1» имел размеры: 15 * 2-5 м и содержал 750 000 деталей. Машина была способна перемножить два 32-разрядных числа за 4 с.

    1943 г. - в США группа специалистов под руководством Джона Мочли и Проспера Экерта начала конструировать компьютер ENIAC на основе электронных ламп.

    1945 г. - к работе над ENIAC был привлечен математик Джон фон Нейман, который подготовил доклад об этом компьютере. В своем докладе фон Нейман сформулировал общие принципы функционирования компьютеров, т. е. универсальных вычислительных устройств. До сих пор подавляющее большинство компьютеров сделано в соответствии с теми принципами, которые изложил Джон фон Нейман.

    1947 г. - Экертом и Мочли начата разработка первой электронной серийной машины UNIVAC (Universal Automatic Computer). Первый образец машины (UNIVAC-1) был построен для бюро переписи США и пущен в эксплуатацию весной 1951 г. Синхронная, последовательного действия вычислительная машина UNIVAC-1 была создана на базе ЭВМ ENIAC и EDVAC. Работала она с тактовой частотой 2,25 МГц и содержала около 5000 электронных ламп. Внутреннее запоминающее устройство емкостью 1000 12-разрядных десятичных чисел было выполнено на 100 ртутных линиях задержки.

    1949 г. - английским исследователем Морнсом Уилксом построен первый компьютер, в котором были воплощены принципы фон Неймана.

    1951 г. - Дж. Форрестер опубликовал статью о применении магнитных сердечников для хранения цифровой информации, В машине «Whirlwind-1» впервые была применена память на магнитных сердечниках. Она представляла собой 2 куба с 32-32-17 сердечниками, которые обеспечивали хранение 2048 слов для 16-разрядных двоичных чисел с одним разрядом контроля на четность.

    1952 г. - фирма IBM выпустила свой первый промышленный электронный компьютер IBM 701, который представлял собой синхронную ЭВМ параллельного действия, содержащую 4000 электронных ламп и 12 000 диодов. Усовершенствованный вариант машины IBM 704 отличался высокой скоростью работы, в нем использовались индексные регистры и данные представлялись в форме с плавающей запятой.

    После ЭВМ IBM 704 была выпущена машина IBM 709, которая в архитектурном плане приближалась к машинам второго и третьего поколений. В этой машине впервые была применена косвенная адресация и впервые появились каналы ввода - вывода.

    1952 г. — фирма Remington Rand выпустила ЭВМ UNIVAC-t 103, в которой впервые были применены программные прерывания. Сотрудники фирмы Remington Rand использовали алгебраическую форму записи алгоритмов под названием «Short Code» (первый интерпретатор, созданный в 1949 г. Джоном Мочли).

    1956 г. - фирмой IBM были разработаны плавающие магнитные головки на воздушной подушке. Изобретение их позволило создать новый тип памяти - дисковые запоминающие устройства (ЗУ), значимость которых была в полной мере оценена в последующие десятилетия развития вычислительной техники. Первые ЗУ на дисках появились в машинах IBM 305 и RAMAC. Последняя имела пакет, состоявший из 50 металлических дисков с магнитным покрытием, которые вращались со скоростью 12000 об. /мин. На поверхности диска размещалось 100 дорожек для записи данных, по 10 000 знаков каждая.

    1956 г. - фирма Ferranti выпустила ЭВМ «Pegasus», в которой впервые нашла воплощение концепция регистров общего назначения (РОН). С появлением РОН устранено различие между индексными регистрами и аккумуляторами, и в распоряжении программиста оказался не один, а несколько регистров-аккумуляторов.

    1957 г. — группа под руководством Д. Бэкуса завершила работу над первым языком программирования высокого уровня, получившим название ФОРТРАН. Язык, реализованный впервые на ЭВМ IBM 704, способствовал расширению сферы применения компьютеров.

    1960-е гг. — 2-е поколение ЭВМ, логические элементы ЭВМ реализовываются на базе полупроводниковых приборов-транзисторов, развиваются алгоритмические языки программирования, такие как Алгол, Паскаль и другие.

    1970-е гг. - 3-е поколение ЭВМ, интегральные микросхемы, содержащие на одной полупроводниковой пластине тысячи транзисторов. Начали создаваться ОС, языки структурного программирования.

    1974 г. - несколько фирм объявили о создании на основе микропроцессора Intel-8008 персонального компьютера — устройства, выполняющего те же функции, что и большой компьютер, но рассчитанного на одного пользователя.

    1975 г. - появился первый коммерчески распространяемый персональный компьютер Альтаир-8800 на основе микропроцессора Intel-8080. Этот компьютер имел оперативную память всего 256 байт, клавиатура и экран отсутствовали.

    Конец 1975 г. — Пол Аллен и Билл Гейтс (будущие основатели фирмы Microsoft) создали для компьютера «Альтаир» интерпретатор языка Basic, позволивший пользователям просто общаться с компьютером и легко писать для него программы.

    Август 1981 г. — компания IBM представила персональный компьютер IBM PC. В качестве основного микропроцессора компьютера использовался 16-разрядный микропроцессор Intel-8088, который позволял работать с 1 мегабайтом памяти.

    1980-е гг. — 4-е поколение ЭВМ, построенное на больших интегральных схемах. Микропроцессоры реализовываются в виде единой микросхемы, Массовое производство персональных компьютеров.

    1990-е гг. — 5-е поколение ЭВМ, сверхбольшие интегральные схемы. Процессоры содержат миллионы транзисторов. Появление глобальных компьютерных сетей массового пользования.

    2000-е гг. — 6-е поколение ЭВМ. Интеграция ЭВМ и бытовой техники, встраиваемые компьютеры, развитие сетевых вычислений.