Цифровые технологии в промышленности на фабриках будущего. Станок как сервис: от системы мониторинга к цифровой фабрике

А.И. Боровков, соруководитель рабочей группы "ТехНет" Национальной технологической инициативы, проректор по перспективным проектам, научный руководитель Института передовых производственных технологий, руководитель Инжинирингового центра "Центр компьютерного инжиниринга" (CompMechLab ®) СПбПУ;

О.И. Клявин, первый заместитель директора Инжинирингового центра "Центр компьютерного инжиниринга" (CompMechLab ®) СПбПУ;

В.М. Марусева, специалист Отдела технологического и промышленного форсайта Инжинирингового центра "Центр компьютерного инжиниринга" (CompMechLab ®) СПбПУ;

Ю.А. Рябов, главный специалист Отдела технологического и промышленного форсайта Инжинирингового центра "Центр компьютерного инжиниринга" (CompMechLab ®) СПбПУ;

Л.А. Щербина, руководитель Отдела технологического и промышленного форсайта Инжинирингового центра "Центр компьютерного инжиниринга" (CompMechLab ®) СПбПУ

Проф. А.И. Боровков - соруководитель рабочей группы "ТехНет" Национальной технологической инициативы (НТИ), проректор по перспективным проектам, научный руководитель Института передовых производственных технологий (ИППТ), руководитель Инжинирингового центра "Центр компьютерного инжиниринга" СПбПУ.

В рамках «дорожной карты» рабочей группы «ТехНет» (Передовые Производственные Технологии) Национальной технологической инициативы (НТИ) будет создана первая в России демонстрационная площадка (полигон, TestBed) Фабрики Будущего - Цифровая фабрика (Digital Factory) , предназначенная для:

  • отработки взаимодействия всего спектра технологий цифрового проектирования и моделирования CAD / CAE / FEA / MBD / CFD / FSI / EMA / CAO / … / HPC / PDM / PLM & MBSE & (MES & ERP) разработки глобально конкурентоспособной и кастомизированной / персонализированной продукции нового поколения, в частности, “best-in-class” оптимизированных конструкций,
  • обеспечения импортозамещения / экспортоориентированного импортоопережения зарубежной продукции

для высокотехнологичных отраслей промышленности и рынков Будущего, формируемых в рамках Национальной технологической инициативы.

Цифровая Фабрика будет сформирована на базе Инжинирингового центра “Центр компьютерного инжиниринга” (CompMechLab ®) и Института передовых производственных технологий (ИППТ) Санкт-Петербургского политехнического университета Петра Великого (СПбПУ) , подразделения которых, обладают уникальным опытом реализации масштабных инженерных проектов по заказам ведущих российских и зарубежных высокотехнологичных компаний-лидеров на современных рынках.

Цифровая фабрика ИППТ СПбПУ создается с целью достижения качественно нового уровня процесса проектирования продуктов / конструкций и подходов к производству за счет эффективного применения всего комплекса мульти- и транс-дисциплинарных компьютерных технологий мирового уровня, которые носят принципиально кросс-отраслевой / кросс-рыночный характер:

  • новая парадигма (Simulation & Optimization)-Driven Design как основа проектирования глобально конкурентоспособных продуктов нового поколения, предназначенных для высокотехнологичных рынков Настоящего и Будущего;
  • принципы бионического дизайна, позволяющие радикально улучшить характеристики продуктов / конструкций (вес, стоимость, оптимальные размеры и форма и др.) при сохранении всех необходимых технический требований (жесткость, прочность, устойчивость, первая собственная частота, концентрация напряжений и др.), когда получаемые оптимальные решения могут напоминать структуры, встречающиеся в живой природе;
  • конвергенция и синергия цифрового моделирования и проектирования, компьютерного / суперкомпьютерного инжиниринга, компьютерных технологий оптимизации и аддитивных технологий, что позволит создавать принципиально новые и глобально конкурентоспособные «best-in-class» оптимизированные продукты / детали / изделия / конструкции.

Применение передовых компьютерных технологий CAD (Computer-Aided Design) и CAE (Computer-Aided Engineering) , включая FEA (Finite Element Analysis) , MBD (MultiBody Dynamics), CFD (Computational Fluid Dynamics), FSI (Fluid-Structure Interaction), EMA (ElectroMagnetic Analysis), CAO (Computer-Aided Optimization) позволяет значительно сократить сроки разработки и вывода на глобальный рынок сложной продукции. Применение суперкомпьютерных технологий (HPC, High-Performance Computing) предоставляет возможность ещё больше ускорить этот процесс, особенно, для сверхсложных наукоемких и ресурсоемких мульти-дисциплинарных проблем.

Внедрение PDM (Product Data Management) и особенно SPDM-систем (Simulation Process and Data Management) помогает упорядочить информационные потоки (для которых, как правило, характерно наличие больших массивов данных (BigData), которые генерируются в процессе многовариантного предсказательного моделирования, проектирования / разработки продукта), систематизирует информацию и облегчает доступ к ней. Каждая из перечисленных выше технологий сама по себе оказывает положительное влияние на оптимизацию производственных процессов, а использование их в комплексе обеспечивает мощный синергетический эффект.

Инициативы по созданию Фабрик Будущего поддержаны, в частности, в странах Европейского Союза. В рамках программы технологического развития Horizon 2020 пилотные проекты Цифровых фабрик создаются на базе таких компаний, как: Volkswagen (автомобилестроение; Германия), Siemens (электроника, Siemens Electronics Works Amberg; Германия) AgustaWestland (вертолетостроение; Англия, Италия), Consulgal (строительство; Португалия) и др. Цифровые фабрики (Digital Factory) являются, с точки зрения общей архитектуры Фабрик Будущего (Factories of the Future), основой (неотъемлемой частью) для развития «Умных» (Smart) и Виртуальных (Virtual) фабрик.

Цифровая фабрика ИППТ СПбПУ предполагает создание и отладку технологических и производственной цепочек до уровней готовности TRL6-TRL-7 / MRL6 (Technology / Manufacturing Readiness Levels) , начиная от стадий исследования и планирования, когда закладываются базовые принципы конкурентоспособного продукта, и заканчивая созданием опытного прототипа изделия:

  • “оцифровка” жизненного цикла продукта и приведение его в соответствие с матрицей целей (требования / ограничения: технологические, технические, экономические и т.д.) на его разработку;
  • формирование базы поставщиков и требований к ним при создании “best-in-class” продуктов (для разных отраслей) - неотъемлемый элемент Виртуальной фабрики;
  • проведение серии первичных расчетов с целью определения общих принципов проектирования и создания оптимальной конструкции на основе современной концепции (Simulation & Optimization)-Driven Design & Additive Manufacturing;
  • конструкторские работы (CAD); компьютерный / суперкомпьютерный инжиниринг (CAE, HPC), все виды оптимизаций (CAO; многокритериальная, многопараметрическая, многодисциплинарная, топологическая, топографическая, оптимизация размеров и формы, наконец, робастная оптимизация);
  • выбор технологии производства и подготовка к изготовлению прототипа (Computer-Aided Manufacturing, CAM; Computer-Aided Additive Manufacturing, CAAM );
  • изготовление прототипа (аддитивное производство, многофункциональные обрабатывающие центры на базе станков с ЧПУ и др.).

Рис. 1. Модель Цифровой фабрики ИППТ СПбПУ

Кроме того, в рамках деятельности Цифровой фабрики ИППТ СПбПУ предполагается создание Национального центра тестирования, верификации / валидации (TVV*) отечественного и зарубежного программного обеспечения (ПО), виртуальных полигонов по валидации разработанных продуктов и сети испытательно-диагностических лабораторий. Данные направления, как и сама Цифровая фабрика, будут реализованы, в первую очередь, сотрудниками Инжинирингового центра “Центр компьютерного инжиниринга” (CompMechLab ®) СПбПУ (ИЦ “ЦКИ” СПбПУ) на базе Суперкомпьютерного центра “Политехнический” (СКЦ СПбПУ), пиковая производительность которого составляет ~ 1 ПетаФлопс.

Уникальные компетенции и опыт сотрудников ИЦ ЦКИ СПбПУ позволят проводить анализ конкурентоспособности и готовности к промышленной эксплуатации отечественного программного обеспечения в сравнении с передовыми зарубежными компьютерными технологиями. В условиях санкций в отношении России, курса государства на импортозамещение, и возрастающего спроса российских компаний на разработку отечественного инженерного программного обеспечения, создание независимого экспертного Центра тестирования инженерного ПО становится чрезвычайно актуальным.

Имеющиеся в ИЦ “ЦКИ” СПбПУ заделы для создания Цифровой Фабрики, созданные в процессе успешной реализации десятков проектов в интересах:

  • ведущих зарубежных высокотехнологичных компаний (Airbus Group, Boeing, General Electric, General Motors, Daimler / Mercedes, BMW, Rolls-Royce, Audi, Porsche, Volkswagen, Schlumberger, Weatherford, Siemens, LG Electronics и др.);
  • ведущих российских высокотехнологичных корпораций (Ростех, Газпром, Роскосмос / ОРКК, ОАК, ОДК, ОСК, Силовые машины, Северсталь и др.),

а также в рамках Проекта по разработке первой в России единой модульной платформы (ЕМП) линейки отечественных автомобилей премиум-класса для первых лиц государства, позволят уже в 2016 году запустить в тестовом режиме Цифровую фабрику в области автомобилестроения, где одним из важнейших блоков будет виртуальный полигон по валидации конструкций.

Отработанные в рамках Цифровой Фабрики ИППТ СПбПУ решения и технологии будут тиражированы и масштабированы на многие высокотехнологичные отрасли промышленности России, а в рамках Национальной технологической инициативы - будут способствовать развитию рынков Будущего и формированию Экономики Будущего - Цифровой Экономики.

Национальная технологическая инициатива (НТИ)

Ряд ключевых мероприятий в рамках конференции посвящались участию университетов в Национальной технологической инициативе (НТИ - это программа мер по формированию принципиально новых рынков и созданию условий для глобального технологического лидерства России к 2035 году). Проректор...

)
Тема 2. Цифровая экономика
Тема 2.1 Маркетинг и современные информационные технологии (презентация , конспект , самостоятельная работа)
Тема 2.2 Цифровой след потребителя (презентация , конспект)
Тема 3. Концепция Фабрик Будущего
Тема 3.1 Современные технологические тренды и предпосылки, ведущие к созданию Фабрик Будущего (презентация , конспект)
Тема 3.2 Архитектура Фабрик Будущего. Цифровая - Умная - Виртуальная Фабрики (презентация , конспект)
Тема 4. Цифровое проектирование. Цифровая фабрика.
Тема 4.1 Компьютерный инжиниринг, возможности цифрового проектирования (презентация , конспект)
Тема 4.2 Построение Цифровой фабрики (презентация , конспект)
Тема 5.Аддитивные технологии
Тема 5.1 Обзор существующих технологий (презентация , конспект)
Тема 5.2. Перспективы использования 3D-печати для Фабрик Будущего (презентация , конспект)
Тема 6. Новые материалы
Тема 6.1 Композитные материалы (презентация , конспект)
Тема 6.2 Мета, наноматериалы и суперсплавы (презентация , конспект)
Экзамен по модулю 1

Модуль 2
Тема 7. Инструменты цифровой трансформации компании
Тема 7.1 Понятие цифровой трансформации (презентация , конспект)
Тема 7.2 Интернет вещей и технологии работы с Big Data (презентация , конспект , самостоятельная работа)
Тема 7.3 Облачные решения для цифровой трансформации (презентация , конспект)
Тема 8. Управление цифровой компанией (презентация , конспект)
Тема 9. Умная фабрика
Тема 9.1 Концепция «Умной» Фабрики (презентация , конспект)
Тема 9.2 Системы управления умным производством (презентация , конспект , самостоятельная работа)
Тема 9.3 Введение в робототехнику (презентация , конспект)
Тема 10. Виртуальная фабрика
Тема 10.1 Концепция Виртуальной Фабрики (презентация , конспект)
Тема 10.2 Построение логистических сетей для Виртуальной Фабрики (презентация , конспект)
Экзамен по модулю 2
Итоговая аттестация. Прокторинг

Курс состоял из 10 тем, а некоторые темы состояли из подтем, содержание которого я описал выше. По каждой подтеме необходимо просмотреть видеолекции и сдать тесты. К каждой видеолекции выложены конспекты лекций и презентации к ним в формате pdf-файлов. Также в составе некоторых тем присутствуют практические и самостоятельные работы, для сдачи которых необходимо также пройти тестирование. Курс делится на два модуля, по которым нужно сдать экзамены тоже в виде тестов, но на этот раз время на сдачу ограничено в размере одного часа. У каждого контрольного задания (тест, практическая работа) есть срок выполнения (дедлайн), по истечении которого даже правильные ответы система принимать не будет! В расписании курса указан дедлайн каждого задания, который варьируется от двух до четырех недель в зависимости от его сложности. И в заключении необходимо сдать общий итоговый экзамен с прокторингом – механизмом контроля за честным выполнением проверочных работ и экзаменов.

Экзамен с прокторингом представляет собой тестирование, во время которого за вами через вебкамеру с микрофоном следит человек - проктор, также он следит и за вашим рабочим столом на вашем компьютере (для этого вам необходимо будет открыть доступ к нему на время сдачи). Во время данного экзамена пользоваться никакими материалами нельзя. Также запрещено куда-нибудь уходить, с кем-либо общаться во время экзамена, уводить взгляд с экрана компьютера. Общение с проктором происходит через чат. Для сдачи экзамена с прокторингом необходимо предварительно записаться. На данном курсе это можно было сделать с 4 декабря по 28 декабря с понедельника по пятницу с 9.00 до 23.00 и в субботу с 9.00 до 12.00. Для сдачи итогового экзамена необходимо на компьютер установить google chrome и расширение к нему Examus .

Когда я сдавал экзамен проктор потребовал от меня, чтобы я поднял мой ноутбук и показал ему весь свой стол, за которым я сидел, а также включить люстру, так как ему было темно и не видно, хотя у меня были включены лампа и торшер. Также для идентификации личности необходимо показать свой паспорт на вебкамеру и его сфотографировать и фото отправить.

После успешного освоения данного курса по почте высылают удостоверение о повышении квалификации. Данный курс я прошел полностью бесплатно. Система оценивания 100-балльная. Чтобы получить удостоверение о повышении квалификации, необходимо было набрать не менее 40% по практическим заданиям и не менее 60% по промежуточным тестам, тестированию по модулям и экзамену. К примеру, на экзамене с прокторингом я набрал 95 баллов. Для общения предусмотрен форум, где можно задать команде курса вопросы, высказать ей свое мнение по теме, обсудить материал с другими слушателями и помочь им в его понимании.

Для желающих зачесть пройденный онлайн-курс при освоении образовательной программы бакалавриата или специалитета в вузе предусмотрена уникальная для России возможность получения сертификатов, электронная версия которого размещается на сайте Санкт-Петербургского политехнического университета Петра Великого: http://open.spbstu.ru/02-cert/

В общем виде сертификат выглядит так:

Приложение к нему:

О курсе

Курс разработан Санкт-Петербургским политехническим университетом Петра Великого, Центром НТИ «Новые производственные технологии» на базе ИППТ СПбПУ совместно с мировым лидером в области ERP-систем SAP, ведущим отечественным Инжиниринговым центром CompMechLab при поддержке Северо-Западного регионального центра компетенций в области онлайн-обучения.

Предлагаемые в курсе материалы уникальны, публикуются в такой системной подаче впервые.

Из википедии:

Алексе́й Ива́нович Боровко́в (род. 7 июня 1955, Ленинград) - советский и российский ученый в области вычислительной механики и компьютерного инжиниринга, член-корреспондент Российской инженерной академии и Международной академии наук высшей школы (МАН ВШ), Почетный работник сферы образования Российской Федерации (2017).

Область научных интересов - вычислительная механика и компьютерный инжиниринг (Computer-Aided Engineering), мульти- и трансдисциплинарные компьютерные технологии для решения промышленных задач, передовые производственные технологии.

По инициативе А. И. Боровкова в 1987 году на кафедре «Механика и процессы управления» физико-механического факультета Политехнического университета организована учебная и научно-исследовательская лаборатория «Вычислительная механика» (Computational Mechanic Laboratory - CompMechLab), заведующим которой он стал. На базе УНИЛ «Вычислительная механика» затем были созданы Центр наукоемких компьютерных технологий (Centre of Excellence - первый в СПбПУ центр превосходства, 2003 г.), высокотехнологичная инжиниринговая spin-out компания ООО Лаборатория «Вычислительная механика» (2006 г.), малое инновационное предприятие ООО «Политех-Инжиниринг» (2011 г.) и Инжиниринговый центр «Центр компьютерного инжиниринга» СПбПУ (2013 г.).

В настоящее время группа компаний функционирует под общим брендом CompMechLab® (CML).

А. И. Боровков - лидер мегапроекта федерального значения по созданию Фабрик Будущего в России, представленного и поддержанного на расширенном заседании экспертного совета 21 июля 2016 года.

Научно-исследовательская, просветительская, инновационная и предпринимательская деятельность А. И. Боровкова многократно получала высокую оценку экспертного сообщества и была отмечена разнообразными частными, общественными и государственными премиями, среди которых: премия Правительства Санкт-Петербурга «За выдающиеся достижения в области высшего профессионального образования» - цикл работ «Подготовка конкурентоспособных специалистов нового поколения, обладающих компетенциями мирового уровня» в научной области «Механика, машиностроение, вычислительная механика и компьютерный инжиниринг» - в номинации «Научные достижения, способствующие повышению качества подготовки специалистов и кадров высшей квалификации» (2008); XI независимая бизнес-премия «Шеф года», реализуемая федеральной группой деловых проектов Chief Time и журналом «Человек Дела» (2017) и многие другие.

В 2017 году ООО Лаборатория «Вычислительная механика» (головная компания CompMechLab®) стала лауреатом национальной промышленной премии Российской Федерации «Индустрия».

ООО Лаборатория «Вычислительная механика» разработала цифровую мультидисциплинарную кросс-отраслевую платформу для создания глобально конкурентоспособной продукции нового поколения CML-Bench . Платформа CML-Bench предназначена для автоматизации ключевых инженерных процессов, связанных с мгновенной кастомизацией, цифровым проектированием, моделированием, виртуальными испытаниями и подготовкой всей необходимой производственной документации, посредством трансдисциплинарного и надотраслевого компьютерного инжиниринга. Платформа CML-Bench является основой для создания Цифровых Фабрик Будущего – систем комплексных технологических решений по производству продуктов от этапа формализации базовых принципов изделия до этапа создания «умного» цифрового двойника на основе цифрового проектирования и моделирования с применением передовых производственных технологий.

Компания работает на мировом технологическом фронтире с компаниями-лидерами в своих отраслях, что позволяет постоянно наращивать уровень своих компетенций и сохранять глобальную конкурентоспособность уже на протяжении 10 лет. В своей работе компания применяет уникальную собственную разработку – CML-Цифровую платформу CML-Bench, которая лежит в основе CML-Экспертной интеллектуальной системы CML-AI – «интеллектуального помощника» системного инженера. Это делает возможным интеграцию на одной виртуальной площадке широкого арсенала лучшего мирового программного обеспечения для решения мультидисциплинарных инженерных задач, инфраструктуры суперкомпьютерных вычислительных мощностей и инженеров с компетенциями мирового уровня.

Портфель продуктов ООО Лаборатория «Вычислительная механика»:

Создание «цифровых двойников» изделий и процессов;
- Цифровое проектирование и моделирование узлов и агрегатов, изделий и технологических процессов их производства;
- Проведение виртуальных испытаний конструкций и изделий;
- Исследования свойств материалов, ресурса конструкций, оценка технологических процессов;
- Проектирование и исследование изделий из композиционных материалов и композитных структур;
- Проектирование изделий под заданную технологию производства: литье, штамповка, фрезеровка, аддитивное производство.

Сотрудники CompMechLab® имеют многолетний успешный опыт выполнения работ по заказам: отечественных высокотехнологичных компаний: госкорпораций “Ростех”, “Росатом”, “Роскосмос”, “Газпром”, “Концерн ВКО “Алмаз-Антей”, Объединенная авиастроительная корпорация, Объединенная двигателестроительная корпорация, Объединенная ракетно-космическая корпорация, Объединенная судостроительная корпорация, а также компаний Ракетно-космическая корпорация “Энергия” им. С.П. Королёва, АВТОВАЗ, КАМАЗ, “Силовые машины”, “Северсталь”, “ВСМПО-АВИСМА”, ФГУП НАМИ, АО «Климов» и многих других зарубежных высокотехнологичных компаний: ABB, Airbus, Alcoa, Boeing, BMW Group (BMW, MINI, Rolls-Royce), Daimler, Ferrari, General Electric, General Motors, LG Electronics, Samsung, Schlumberger, Siemens, Volkswagen Group (Audi, Bugatti Automobiles, Porsche, Volkswagen), Weatherford и др. С 2017 года CompMechLab ведёт активную работу с китайскими автопроизводителями. В числе заказчиков такие компании как BAIC Corp, Chery Automobile Corporation, а также Центральный Китайский автомобильный институт China Automotive Technology and Reseach Center (CATARC). В числе компаний, включившихся в создание Цифровых Фабрик Будущего в партнёрстве с CompMechLab, предприятия российской автомобильной промышленности – ГНЦ РФ ФГУП НАМИ (в рамках реализации проекта государственного значения «Единая модульная платформа» («Кортеж»)), ПАО «УАЗ» (в рамках реализации проекта по созданию внедорожника нового поколения), производитель современных автобусов – ООО «Бакулин Моторс Групп», двигателестроительное предприятие ПАО «ОДК-Сатурн» (входит в Объединённую двигателестроительную корпорацию) и АО «Средне-Невский судостроительный завод» (входит в Объединенную судостроительную корпорацию); высокотехнологичные предприятия Республики Татарстан – АО «НПО «ОКБ им. М.П. Симонова», АО «Казанское моторостроительное производственное объединение», ОАО «Казанский вертолетный завод», ПАО «КАМАЗ»; на данный момент отобраны наиболее актуальные отраслевые и корпоративные проблемы-вызовы для создания Фабрики Будущего с Объединенной авиастроительной корпорацией (ОАК).

ООО Лаборатория «Вычислительная механика» работает на мировом технологическом «фронтире», с компаниями-лидерами в своих отраслях, что позволяет перманентно наращивать уровень своих компетенций и сохранять глобальную конкурентоспособность уже на протяжении 10 лет. Компания в своей работу применяет уникальную собственную разработку – CML-цифровую платформу CML-Bench, которая лежит в основе CML-интеллектуальной систему CML-AI –« интеллектуального помощника» системного инженера. Это делает возможным интеграцию на одной виртуальной площадке широкого арсенала лучшего мирового программного обеспечения для решения мультидисциплинарных инженерных задач, инфраструктуры суперкомпьютерных вычислительных мощностей и инженеров с компетенциями мирового уровня.

Все ли слушатели курсов могут похвастаться, что куратором их курса был такой человек, как Боровков А.И.!?

Если вы являетесь руководителем компании или инженером, то я рекомендую пройти курс "Технологии «Фабрик Будущего»". Использование передовых производственных технологий и цифровая трансформация компании повысит производительность труда и рентабельность компании. Именно технологии, описанные в данном курсе, смогут повысит темпы роста российской экономики и повысить уровень жизни населения.

Задача - работа в области высокотехнологичной промышленности, увеличение ее экспортного потенциала с выходом на глобальные рынки.

По словам участников процесса, ожидается прорыв в сфере научно-технического развития РФ.
О том, что такое фабрика будущего, рассказал председатель комитета по промышленной политике и инновациям Санкт-Петербурга Максим Мейксин.

Цифровой двойник

- Что представляет собой новая концепция и почему на неё возлагаются такие надежды?

Существует два способа выпуска продукции: классический, когда опытный образец изготавливают по чертежу, и новый подход, при котором будущее изделие формируется в виде цифрового двойника. Процесс испытания, например, автомобиля и его сборку с учетом результатов испытаний можно имитировать в цифровой программе. Технологии производства отрабатываются на компьютерной модели. И само производство выглядит иначе, чем классическое, потому что цифровой двойник позволяет прогнозировать свойства будущего изделия, добиваться нужного качества. В какой-то момент двойник начинает «обучать» своего прототипа, реальный объект: на основе работы цифрового аналога, скажем, самолета, можно сделать прогноз его эксплуатационной надёжности. То же и с производством лекарств, цифровые двойники которых позволят рассчитать нужную молекулу не опытным многолетним путем, а гораздо более коротким математическим и просчитать воздействие на человеческий организм.

- То есть цифровой двойник станет ключевым понятием при создании нового типа промышленности?

Наша задача показать предприятиям, как нужно мыслить в новой парадигме, в формате цифровых фабрик, которые открывают широкие возможности. Чтобы не догонять промышленных лидеров, а добежать первыми в этой конкурентной гонке, срезав угол, создав цифровую промышленность, которая посредством цифровых двойников позволит реализовать самые перспективные идеи на высоком уровне. Здесь очень важна работа, которую ведет Политехнический университет. Для реализации проекта «Фабрика будущего» в Петербурге создан проектный офис под руководством губернатора.

Когда революция лучше эволюции

- Насколько готовы петербургские предприятия к такой перестройке?

На уровне Министерства промышленности и торговли создана специальная группа, занимающаяся оценкой готовности к работе в новом формате. Около 25 предприятий Петербурга заявили о такой готовности. Среди них Средне-Невский судостроительный завод, который строит цифровую верфь. Это будет хорошее конкурентное преимущество, многоуровневое, когда суда станут производиться, исходя из расчетных проектов цифровых моделей. Управление судами и контроль за ними также будет осуществляться при помощи программных продуктов. Облегчается целый ряд технологических операций, как производственных, так и управленческих, повышается производительность труда. Переход на цифровые фабрики - огромный шаг вперед.

- Получается, мы стоим на пороге новой научно-технической революции?

Точнее, четвертой промышленной. Есть два пути развития - эволюционный и революционный. До сегодняшнего дня наша промышленность развивалась эволюционным путём, серьёзно отставая в ряде отраслей, хотя в каких-то областях мы являемся безусловными лидерами. Поэтому выбор такой: либо закупать новое современное оборудование в соответствии с существующими стандартами, окупаемость которого 5-10 лет, либо переходить на цифровую платформу. Во втором случае мы можем дойти до цели быстрее конкурентов, не придётся окупать средства, вложенные в оборудование, мы в этом смысле свободны. У России есть шанс занять лидирующее место на глобальных рынках.

- Какова судьба предприятий, которые не перейдут на цифровые технологии?

Ещё недавно все знали такого мирового производителя, как «Кодак». Компания обеспечивала 80% мировой потребности в фотоплёнке и фотобумаге. Сейчас этой компании нет, плёнка мало кому нужна. Таких примеров много. Те предприятия, которые не будут переходить на новый формат работы, к сожалению, обречены. Задача правительства Санкт-Петербурга - помочь компаниям вписаться в новые условия, стать высокотехнологичными, превосходящими своих партнёров в конкурентной гонке.

А автор кто?

- Это просветительская функция?

Скорее, это роль проводника, указывающего направление. Суть в том, чтобы Центр НТИ и предприятия встретились и начали совместное движение вперёд. Мы готовы предоставить заинтересованным компаниям пакеты сформированных решений, вытекающих из опыта тех предприятий, которые уже идут этим путём. Например, из практики работы Совета по конверсии можно извлечь немало полезного. Мы сейчас упаковываем нужные предложения в некий набор рекомендаций: например, как оптимизировать затраты при переходе на выпуск конкурентного продукта.

Цифровая фабрика - это когда к работе на стадии проектирования могут привлекаться представители разных компаний, наиболее компетентных в той или иной области. Кому в таком случае будут принадлежать авторские права?

Идея в том, что в мире много профессиональных команд, умеющих решать те или иные задачи. Компиляция результатов их работы, создание общего продукта гораздо удобней, чем заказ, выполняемый в рамках одной компании. Если есть возможность привлекать разные проектные команды, то получаются более качественные решения. Проблем с авторскими правами здесь не вижу, потому что всё равно остаётся заказчик, который оплачивает работу. Всё покупается в одном пакете вместе с правами.

Какие новации, появившиеся в Петербурге, можно назвать наиболее интересными? Проектами, опережающими время?

Их много. В сентябре со стапеля Балтийского завода сошёл первый серийный атомный ледокол «Сибирь» проекта 22220 - самый большой и мощный в мире. Совокупный потенциал судостроительной и радиоэлектронной промышленности позволяет нашему городу стать одним из центров создания беспилотного морского транспорта. Крупным экспортёром инновационной продукции стал концерн «Гранит-Электрон», выпустивший уникальные системы наклонного бурения для нефтегазовой промышленности. Годовой объем его экспорта составил 2,5 миллиарда рублей. В 2017 году Петербург занял первое место в рейтинге инновационных регионов Российской Федерации. По данным Национального рейтинга «Техуспех-2017», в топ-100 российских инновационных компаний вошли 15 предприятий Петербурга, лидеров фармацевтики, машиностроения, электроники и инжиниринга.

Что нужно для ускорения цифровизации промышленности?

На промышленных предприятиях России постепенно проходит апробация технологий «умного» производства и фабрик, новые цифровые проекты запускают компании из сегментов авиа-, двигателе- и судостроения .

На сегодняшний момент на государственном уровне утверждены планы по строительству 40 «Фабрик будущего». Вложения в проекты на первом этапе составят 15,6 млрд рублей и обеспечат 1,5%-ную долю на мировом рынке «умных» фабрик.

Какие smart-производства появляются в России? Что нужно для ускорения цифровизации промышленности?

Цифровой ВВП

Постепенно российская промышленность внедряет на своих предприятиях элементы «умного» производства, на государственном уровне разворачиваются программы по созданию «умных» фабрик.

Чтобы ускорить этот процесс, в 2017 году президиум Совета при президенте России по модернизации экономики и инновационному развитию утвердил дорожную карту рабочей группы «Технет». Документ представляет собой план мероприятий программы «Национальная технологическая инициатива», включает в себя развитие цифрового проектирования и моделирования, робототехники, Big Data и прочих технологий для управления и автоматизации промышленности.

Ключевое значение в дорожной карте «Технет» отводится формированию так называемых «Фабрик будущего» - технологических платформ и решений, объединяющих элементы цифровых, «умных» и виртуальных фабрик. Речь идет о применении цифрового проектирования и производства, проведении виртуальных испытаний.

Авторы дорожной карты отмечают: «Цифровая фабрика ориентирована на проектирование и производство продукции нового поколения, как правило, от стадии исследования и планирования, когда закладываются базовые принципы изделия, до стадии создания цифрового макета продукта, «цифрового двойника» и опытного образца или мелкой серии.

«Умная» фабрика рассчитана на производство продукции нового поколения от заготовки до готового изделия по цене серийного производства текущего индустриального уклада.

Виртуальная фабрика - это объединение цифровых и (или) «умных» фабрик в единую сеть либо как части глобальных цепочек поставок, либо как распределенных производственных активов ».

В 2015 году объем мирового рынка услуг «Фабрик будущего» составил 773 млрд долларов США, а доля России в нем - 0,28%. В 2035 году объем мирового рынка составит 1,4 млрд долларов США, а доля РФ в ней может составить 1,5%. По планам Минпромторга РФ, это произойдет за счет создания к 2035 году 40 «Фабрик будущего». Объем финансирования первого этапа программы до 2019 года - 15,6 млрд рублей, в том числе 8,5 млрд рублей из федерального бюджета.

Аналитики McKinsey Global Institute отмечают, что цифровизация российского производства к 2025 году ежегодно способна увеличивать объем ВВП страны на сумму от 1,3 до 4,1 трлн рублей. Применение цифровых технологий сократит сроки выхода продукта на рынок на 20-50% и повысит производительность за счет автоматизации на 45-55%.

Инвестиции в испытания

«Умные» системы появляются в авиастроении и вертолетостроении: в Объединенной авиастроительной корпорации (ОАК) используется концепция виртуального конструкторского бюро, когда инженеры из нескольких конструкторских бюро и производственных площадок работают над проектированием модели самолета в единой цифровой среде. Технология применяется на «Гражданских самолетах Сухого», в « », « » и холдинге «Вертолеты России».

Авторы дорожной карты «Технет» прогнозируют, что лидером по реализации проектов «умных» фабрик в России станет « » (входит в Объединенную двигателестроительную корпорацию, Ярославская область), предприятие специализируется на разработке и производстве газотурбинных двигателей для авиации, энергетики и т. д.

Госкорпорация «Ростех» заявила о планах запустить испытательный полигон на ярославском предприятии, инвестиции оцениваются в сумму около 7 млрд рублей. В рамках проекта «Умная фабрика» появится система управления жизненным циклом изделия (PLM-управление), это позволит также организовать обмен информации с сервисными центрами.

«Итогом реализации проекта станет организация «умного» производства, формирование компетенций и технологических решений для тиражирования «Умных заводов», способных достойно конкурировать на мировом рынке », - заявил губернатор Ярославской области Дмитрий Миронов.

Ожидается, что за первые три года на «Умной фабрике», созданной в «ОДК-Сатурне», будут доведены до промышленного использования 20 технологий.

В ОДК добавили, что в 2017 году был запущен первый этап проекта на базе «ОДК-Сатурн» - акселератор технологических проектов в области передовых производственных технологий. Был отобран ряд проектов, обладающих высоким потенциалом внедрения в производство. Также разработаны образовательные программы для дальнейшей работы и привлечены первые инвесторы. В целом наиболее востребованы для реализации на полигоне технологические решения, касающиеся ряда сегментов. Речь идет об идеях в области математического моделирования, компьютерного и суперкомпьютерного инжиниринга, IoT и .

Тираж для верфи

При поддержке Национальной технологической инициативы объявлен проект на предприятии Объединенной судостроительной корпорации. На Средне-Невском судостроительном заводе (СНСЗ, расположен в Санкт-Петербурге) в ближайшие годы планируется запуск цифровой верфи. Будет создана база данных по всем компонентам, применяемым в судостроении, вместо натурных испытаний изделий начнут применять компьютерную «проверку» продукции.

Цифровизация позволит увеличить производственные мощности предприятия в два раза и повысить объемы экспорта. Стоимость проекта составит 350 млн рублей.

«Большую часть средств (245 млн рублей) предполагается получить из федерального фонда Национальной технологической инициативы, еще 105 млн рублей - собственные средства завода. Мы приступим к созданию цифровой верфи независимо от получения субсидии. Субсидия позволит ускорить процесс, но мы в любом случае будем работать над проектом », - заявил генеральный директор СНСЗ Владимир Середохо.

При успешной реализации проекта на СНСЗ модель планируется тиражировать на других российских верфях.

Госзаказ для smart-проектов

В корпорации «Пумори» (профиль компании - технологический инжиниринг) отмечают, что среди российских компаний интерес к «умному» производству увеличился. За последние три года спрос на smart-технологии вырос в 3-3,5 раза. Компания провела работу по внедрению систем автоматизации на более чем 100 предприятиях в российских регионах.

Также корпорация вывела на рынок комплексный продукт Smart Factory от японской станкостроительной компании OKUMA и собственную разработку систему инструментообеспечения TOOL-MANAGEMENT.

МОСКВА, 16 июн - РИА Новости, Анна Урманцева . В 1995-ом году американский информатик Николас Негропонте (Массачусетский университет) ввел в употребление термин "цифровая экономика". Сейчас этим термином пользуются во всем мире, он вошел в обиход политиков, предпринимателей, журналистов. В прошлом году один из главных докладов Всемирного банка содержал отчет о состоянии цифровой экономики в мире (доклад вышел под названием "Цифровые дивиденды").

Однако до сих пор содержание этого понятия остается размытым, четкого определения нет и в докладе ВБ. В этом материале РИА "Наука" собраны наиболее общие представления о том, что представляет собой цифровая экономика.
Для начала, стоит вспомнить определение обычной "аналоговой" экономики - это хозяйственная деятельность общества, а также совокупность отношений, складывающихся в системе производства, распределения, обмена и потребления. Использование компьютера, интернета, мобильных телефонов уже можно считать "потреблением", в этом случае цифровую экономику можно представить как ту часть экономических отношений, которая опосредуется Интернетом, сотовой связью, ИКТ.

Доктор экономических наук, член-корреспондент РАН — Владимир Иванов дает наиболее широкое определение: "Цифровая экономика - это виртуальная среда, дополняющая нашу реальность".

Действительно, наверное, все наши действия в компьютерной виртуальной реальности можно отнести к системе производства, распределения, обмена или потребления. Но, конечно, виртуальная реальность, как таковая, появилась отнюдь не с созданием компьютера. Вся мыслительная деятельность человека может быть отнесена к ней. Кроме того, деньги - главный инструмент экономики, — также порождение виртуальности, так как являются придуманным "мерилом" стоимости товаров и услуг. А вот с изобретением компьютера удалось "оцифровать" деньги, что, несомненно, упростило товарно-денежные отношения, привело к огромной экономии времени и повышению безопасности операций.

Мещеряков Роман — профессор РАН, доктор технических наук, проректор по научной работе и инновациям Томского государственного
университета систем управления и радиоэлектроники считает, что к термину "цифровая экономика" существует два подхода. Первый подход "классический": цифровая экономика — это экономика, основанная на цифровых технологиях и при этом правильнее характеризовать исключительно область электронных товаров и услуг. Классические примеры - телемедицина, дистанционное обучение, продажа медиконтента (кино, ТВ, книги и пр.). Второй подход — расширенный: "цифровая экономика" — это экономическое производство с использованием цифровых технологий.

"В настоящее время, — поясняет Роман Мещеряков, — некоторые эксперты считают, что надо расширять это понимание и включать в него цепочку товаров и услуг, которые оказываются с использованием цифровых технологий, в том числе такие понятия как: интернет вещей, Индустрия 4.0, умная фабрика, сети связи пятого поколения, инжиниринговые услуги проторипирования и прочее".

Действительно, раньше виртуальная часть мира, которая располагалась в мыслительной реальности человека, не была производительной силой, не была той средой, где создаются новые идеи и продукты.

Теперь виртуальная часть совмещена с реальной: можно создать "основанный на реальных событиях" мир, который сам же будет "экономикой в экономике".
Достоинство этого мира в том, что там можно делать что угодно. Это важно не только в том случае, когда появляется возможность создания онлайн-игры, где можно прыгать вверх на высоту многоэтажного дома, путешествовать по космосу без скафандра и многократно умирать, — это важно для испытания, совершенствования, апробирования новых продуктов. Таким образом, цифровая экономика получила шикарный шанс обогнать "аналоговую", которая обязана каждый раз проводить краш-тест, ломая машины в реальности, а не в виртуальной среде.

Александра Энговатова — кандидат экономических наук, доцент кафедры экономики инноваций экономического факультета МГУ имени М.В. Ломоносова, — дает такое определение: "Цифровая экономика — это экономика, основанная на новых методах генерирования, обработки, хранения, передачи данных, а также цифровых компьютерных технологиях".

"В рамках данной экономической модели, — подчеркивает Александра Энговатова, — кардинальную трансформацию претерпевают существующие рыночные бизнес-модели, модель формирования добавочной стоимости существенно меняется, значение посредников всех уровней в экономике резко сокращается. Кроме того, увеличивается значение индивидуального подхода к формированию продукта, — ведь теперь мы можем смоделировать все, что угодно."

Обобщая, можно сказать, что цифровой экономикой можно охватить все то, что поддается формализации, то есть, превращению в логические схемы. А жизнь сама найдет возможность вписать это "нечто" в систему производства, распределения, обмена и потребления.