Чем обогащается уран. Зачем нужно обогащать уран? Подробный разбор

Исходным этапом ядерного топливного цикла (ЯТЦ) является добыча руды и производство уранового концентрата, включающее основные стадии:

собственно до­быча урансодержащей руды;

ее механичес­кое обогащение посредством удаления пус­той породы;

измельчение полученной руд­ной массы;

выщелачивание из нее урана с помощью серной кислоты или карбоната натрия;

получение уранового концентрата путем извлечения из урановых растворов (экстракцией, сорбцией или селективным осаждением);

сушка уранового концентрата и его герметичная упаковка (112).

Добыча урановой руды производится на рудниках и в открытых карьерах обычными способами и методом подземного выщелачивания, при которых для растворения урана в подземное месторождение вводятся особые растворы.

Все предприятия по добыче урана оказывают не­гативное воздействие на окружающую среду. Основными источниками радиоактивного загрязнения в местах добычи являются карь­еры, шахты, «хвостохранилища» (специально отведенная территория для складирования «хвостов» - отвалов породы после технологического процесса извлечения из урановой руды полезного компонента), открытые склады руды, отвалы. Загрязнение вызыва­ется выбросами радиоактивных газов, пыли и аэрозолей в атмосферу, сбросом шахтных вод, утечек и аварийных сбросов из «хвостохранилищ» и гидротранспортных систем, а также вследствие применения рудных пород в качестве местных стройматериалов (112). В США на совокупный объем "хвостов" приходится более 95% общего объема всех радиоактивных отходов на всех стадиях производства ядерного оружия и электроэнергии. Несмотря на то, что опасность от одного грамма "хвостов" мала по сравнению с большинством других радиоактивных отходов, большие объемы этих отходов и отсутствие соответствующих законодательных мер вплоть до 1980 года, привели к значительному повышению уровня загрязнения окружающей среды (146).

Рисунок 26. Урановый карьер (145).

Из руды методом дробления (очищения) извлекается окись урана (U 3 O 8), имеющая форму "желтого кекса" - это желтый или коричневый порошок, где содержится около 90% окиси урана.

Сырье для получения ядерного топлива различается в зависимости от типа ядерного реактора, для которого предназначено топливо. В большинстве реакторов применяется обогащённый уран, а исходным соединением для его обогащения является гексафторид урана. В природном уране содержится 0,8 % изотопа 235U. Для уменьшения размеров реактора содержание 235U в топливе предварительно повышается до 2,0 или 2,4 %.

Изготовление химических концентратов природного урана в форме октооксида ура­на (III) U 3 O 8 или диураната натрия Na 2 U 2 O 7 осуществляется в процессе гидрометаллургического производства. Выбор технологии обусловлен химическим составом руды и спецификой предприятия. При карбонатном выщелачивании измельченная урановая руда обрабатывается карбонатом натрия Na 2 CO 3 с получением уранового раствора, из которо­го с помощью соответствующих химических реакций осуществляется селективное осаж­дение урана в виде диураната натрия. После доочистки продукта его сушат, и полученный порошок желтого цвета упаковывается в герметичные емкости (112).

Другой вид уранового концентрата - октооксид урана (III) U 3 O 8 после сушки представ­ляет собой порошок черного цвета и также упаковывается в герметичные емкости.

Полученный на первой стадии ядерного топливного цикла концентрат урана поступает на химический передел, где партии концентрата усредняются и очищаются от примесей. До осущес­твления процесса изотопного обогащения необходимо проведение операции доочистки урана для превращения его в ядерно-чистый материал (такая операция называется аффи­наж). Особое внимание уде­ляется очистке урана от бора, кадмия, гаф­ния, являющихся нейтронпоглощающими элементами, а также от редкоземельных эле­ментов (гадолиний, европий и самарий). Технологически аффинаж состоит в экстрак­ционной очистке урана трибутилфосфатом после растворения уранового концентрата в азотной кислоте (143).

Конечной продукцией химического передела является тетрафторид урана, который направляется на конверсию. В настоящее время гексафторид урана по совокупности свойств является наиболее подходящим химическим соединением для изотопного обогащения с помощью разработанных технологий. Она включает производство чистого фтора, измельчение тетрафторида (UF4) или оксида урана до состояния порошка с по­следующим его сжиганием в факеле фтора. Затем производится фильтрация гексафторида урана(UF 6) и его конденсация в системе хо­лодных ловушек. Гексафторид урана подвергается обогащению по изотопу урана-235.

Предприятия по обогащению урана входят в Топливную компанию «ТВЭЛ», которая объединяет все предприятия и организации, так или иначе связанные с производством ядерного топлива (45).

Непосредственно обогащением урана занимаются четыре предприятия:

Ангарский электролизный химический комбинат (г. Ангарск, Иркутская область)

Производственное объединение «Электрохимический завод»

(г. Зеленогорск, Красноярский край)

Уральский электрохимический комбинат (г. Новоуральск, Свердловская область)

Сибирский химический комбинат (г. Северск, Томская область).

Их производственные мощности позволяют России в лице Росатома занимать 40% мирового рынка услуг по обогащению урана и планировать увеличение этой доли.

Россия обладает самой передовой технологией по обогащению урана - газоцентрифужной. Внутри вращающейся центрифуги более тяжелые молекулы, содержащие атомы U-238, преимущественно движутся по направлению к внешней стороне цилиндра, а более легкие молекулы, содержащие U-235, остаются ближе к центральной оси. Затем газ в этом цилиндре начинает циркулировать снизу вверх, продвигая обедненный уран, который находится ближе к внешней стенке, по направлению к верхней части, а газ, обогащенный U-235 - от центра по направлению к нижней части. Затем два потока, один обогащенный, а другой обедненный, можно извлечь из центрифуги и разделить на газодиффузионных «каскадах» (144).

Из обогащенного гексафторида урана изготавливается порошок диоксида урана. Обогащенный по U- 235 UF 6 поступает на завод в 2,5 тонных стальных контейнерах. Из него гидролизом получают UO 2 F 2 , который затем обрабатывают гидроксидом аммония. Выпавший в осадок диуранат аммония отфильтровывают и обжигают, получая диоксид урана UO 2 , который прессуют и спекают в виде небольших керамических таблеток. Номенклатура таблеток (в зависимости от размеров и обогащений) составляет более 40 разновидностей. Они комплектуются в партии с проверкой на соответствие техническим требованиям.

Таблетки вкладывают в трубки из циркониевого сплава (циркалоя) и получают топливные стержни - тепловыделяющие элементы (твэлы) (рис.27), которые объединяют примерно по 200 штук в законченные топливные сборки, готовые для использования на АЭС.

Рисуное 27. Общий вид отдельных видов ТВЕЛов (147).

Аналогичные технологии используются для производства уран-эрбиевых таблеток для топливных кассет реакторов РБМК, а также для изготовления уран-гадолиниевых таблеток для тепловыделяющих сборок с выгорающим поглотителем реакторов. Уран-гадолиниевое топливо позволило повысить безопасность эксплуатации атомных реакторов и увеличить их топливный цикл (до 4 лет у ВВЭР-1000 и до 5 лет у ВВЭР-440).

Рисунок 28. Тепловыделяющая сборка (148).

Топливо для реактора типа ВВЭР представляет собой пучок твэлов с оболочками из циркониевого сплава и заключенными в них таблетками диоксида урана. Тепловыделяющая сборка (ТВС) для реакторов ВВЭР имеет шестигранное сечение (рис.28). Кроме твэлов, ее элементами являются головка, хвостовик, дистанционирующие решетки и в некоторых случаях - чехол.

Головка предназначена для сцепления при загрузке-выгрузке, а хвостовик обеспечивает установку ТВС в реакторе и организует тракт для подачи теплоносителя, охлаждающего твэлы. ТВС ВВЭР-440 состоит из 126 твэлов. Тепловыделяющая сборка для реактора ВВЭР-1000 насчитывает 311-312 твэлов. Имеются различные модификации топлива для реакторов этого типа, рассчитанные на трех-, четырех- и пятигодичные топливные циклы.

Одним из путей повышения эксплуатационных характеристик реактора ВВЭР является переход на керметное топливо, т.е. создание оболочкового твэла на основе керметного топлива с матричной структурой.

Керметное топливо – гранулы из диоксида урана (объемная доля UO2 до 70%), расположенные в металлической матрице, изготавливаемой обычно из сплава на основе циркония. Такое топливо характеризуется отсутствием прямых контактов между топливными частицами благодаря их равномерному распределению в металлической матрице. Это достигается использованием сферических топливных частиц, предварительно покрытых материалом матрицы, которые впрессовывают в сердечники (143).

Помимо рассмотренной выше схемы производства уранового топлива – от рудника через незначительное обогащение к твэлам – в последнее десятилетие реакторное топливо изготавливают из высокообогащённого оружейного плутония путём его разбавления.

Россия получила в наследство от СССР 25 - 30 тыс. тактических и стратегических ядерных боеголовок. В соответствии с международными соглашениями по сокращению стратегического и тактического ядерного вооружения, страна должна демонтировать 16–18 тыс. ядерных боеголовок. После демонтажа боеголовок высвобождаются сотни тонн высокообогащенного урана (ВОУ) и десятки тонн плутония. На начало ХХI века запасы ВОУ в России оценивались в 900 т.

Демонтаж ядерного оружия ведётся на тех же заводах, на которых его создавали. В результате демонтажа из боеголовки извлекается таблетка ядерного материала, так называемый «пит» (металлический уран в оболочке из тугоплавкого металла). В Томске-7 металлический уран преобразуют в стружку, которую отправляют на Уральский электрохимический комбинат. Там металлический высокообогащённый уран переводят в UF 6 . На узле смешивания по первой трубе идет 235 UF 6 . Разбавление ведут не природным ураном-238, а слабо обогащённым ураном (по второй трубе идет UF 6 с обогащением по урану-235 1,5%). В результате на выходе третьей трубы имеется UF 6 обогащенный до 4 - 5% - типичное обогащение для топлива реакторов атомных электростанций. Затем по обычной схеме гексафторид превращают в диоксид урана (144).

Для разбавления одного килограмма высокообогащённого урана, нужно около 300 кг природного урана. Из одного килограмма высокообогащённого урана получается примерно 30 кг низкообогащённого урана. За 6 лет разбавлено 125 тонн российского высокообогащенного урана, что эквивалентно примерно 5000 боеголовкам. С 1999 года начали перерабатывать 30 тонн в год. В течение 20 лет предполагается переработать 500 тонн урана, извлеченного из российского оружия.

В настоящее время в связи с исчерпанием запасов урана-235 (как рудных, так и складских) все большее внимание привлекает плутоний-239, как основа будущего реакторного топлива, поскольку один грамм плутония эквивалентен 100 граммам извлеченного из ОЯТ урана, 1500-3000 кубометров природного газа, 2-4 тоннам угля или одной тонне нефти. В то же время плутоний является опасным радиоактивным материалом, который может быть использован и для создания ядерных зарядов. Поэтому его накопление не только расточительно, но и опасно. Проблема обращения с плутонием является частью общего процесса ядерного разоружения, в ходе которого в России и США высвобождаются значительные количества оружейных делящихся материалов - высокообогащенного урана и плутония.

На приготовление ядерного топлива обычно идут двуокись плутония, смесь карбидов плутония с карбидами урана, сплавы плутония с металлами. Однако, чаще он используется в виде смеси с природным ураном или с ураном, слегка обогащённым 235U (так называемое смешанное оксидное топливо или МОКС-топливо).

Смешанные окислы (МОКС) - реакторное топливо, состоящее из смеси окислов урана и плутония. МОКС используются для регенерации переработанного отработанного топлива (после отделения отходов) в медленных ядерных реакторах (термальная регенерация) и в качестве топлива для быстрых реакторов-размножителей (144).

Пригодный для использования в энергетических реакторах плутоний может быть получен за счёт переработки отработанного ядерного топлива или из ядерного оружия.

Общее количество плутония, хранящегося в мире на начало 21-го века во всевозможных формах, оценивается в 1239 тонн, из которых две трети находится в отработанном ядерном топливе АЭС. Уже сейчас более 120 тысяч тонн ОЯТ находится в хранилищах, а к 2020 году его будет 450 тысяч тонн.

Наиболее приемлемой химической формой плутония при использовании его в качестве топлива для энергетических реакторов является двуокись плутония PuO 2 в смеси с двуокисью природного урана UO 2 .

Смешанное оксидное топливо обычно используется в двух типах реакторов - в реакторах на быстрых нейтронах (БН) и в легководных реакторах (ЛВР). Обычно МОКС с содержанием плутония от 5 до 8 % используется в реакторах с водой под давлением и в реакторах с кипящей водой.

Таблетки МОКС можно изготавливать путем механического смешивания исходных порошков диоксидов урана и плутония с образование «основной смеси» UO 2 -PuO 2 . Содержание плутония в смеси затем корректируется для использования в реакторе путем добавления UO 2 . Эта технология обеспечивает получение гомогенной структуры таблеток с повышенной плотностью. Затем порошок прессуют и спекают с образованием гранул, которые впрессовываются в топливные стержни (143, 144).

Возможна переработка оружейного плутония методами «водной» химии, которые хорошо развиты на комбинатах - производителях плутония – растворение металлического плутония в кислотах (смесь HNO 3 +HF или смесь HNO 3 +HCOOH или HCl) с последующей очисткой плутония в виде азотнокислого раствора. Из очищенного нитрата можно получить PuO2 через оксалатное осаждение, или смешанный оксид (U, Pu)О 2 путем совместного соосаждения ураната и плутоната аммония в присутствии поверхностно-активных веществ, или плазменной денитрацией. По этой технологии образуются малопылящие гранулы. При прессовании таблеток применяется сухая связка – стеарат цинка, что позволяет существенно улучшить технологический процесс и повысить качество таблеток. Водные способы отличает многостадийность и длительность технологического цикла, а также громоздкость аппаратурного оформления. Высокая агрессивность растворов накладывает жесткие ограничения на конструкционные материалы. Главной же проблемой водных технологий было и остается образование при переработке огромных количеств высокотоксичных долгоживущих радиоактивных отходов.

Более прогрессивными методами переработки оружейного металлического плутония в соединения, пригодные для изготовления компонентов топлива быстрых реакторов являются "неводные" – пирохимические и пироэлектрохимические технологии.

Пирохимический метод– гидрирование металлического плутония с последующим окислением до PuO 2 в одном реакторе; пироэлетрохимический – растворение металлического плутония в расплаве хлоридов (NaCl+KCl) с последующей осадительной кристаллизацией PuO 2 в одном электролизере.

Суть технологии заключается в сокращении числа операции и уровня воздействия на окружающую среду. Это достигается введением металлического плутония в среду расплавленной соли, где осуществляется его растворение и получение готовой композиции для снаряжения твэлов. Минимизация воздействия на окружающую среду происходит в двух направлениях: в расплавленной соли происходит взаимодействие ее составляющих с образованием комплексов. Это снижает уровень образованию аэрозолей в 1000 раз; кристаллические оксиды, используемые при производстве МОКС-топлива регенерируют аэрозоли в 15000 раз меньше, чем порошки полученные по мокрой схеме. Это означает, что барьеры защиты дешевле и надежнее (156).

При высокой эффективности производства они оказывают минимальное неблагоприятное воздействие на среду. В процессе пирохимической переработки плутония образуется в тысячи раз меньше радиоактивных отходов по сравнению с водными технологиями. К тому же, пирохимические технологии более прозрачны с точки зрения контроля за безвозвратностью демонтажа избыточных ядерных зарядов и контроля за нераспространением ядерных вооружений.

Проблемы безопасности и охраны труда при работе с МОКСом более значимы, нежели в случае с урановым топливом. Изотопы плутония существенно отличаются по своим ядерным свойствам от изотопов урана. Эти различия приводят к следующим последствиям для безопасности реактора, работающего на МОКС (156):

Повышенная критичность - риск, связанный с критичностью при обращении и производстве плутония намного выше, чем в случае с ураном.

Уменьшение поглотительной способности управляющих стержней (эти стержни поглощают избыток нейтронов, предотвращая переход в режим неконтролируемой цепной реакции) легководных реакторов. Это происходит из-за того, что МОКС сравнительно хорошо поглощает нейтроны низких энергий (медленные нейтроны), поэтому средняя энергия нейтронов оказывается выше, а управляющие стержни поглощают быстрые нейтроны хуже, чем медленные. По той же причине падает поглотительная способность бора, добавляемого в охлаждающую жидкость реактора с водой под давлением (а также, в аварийных ситуациях, реактора на кипящей воде. Из-за этого оказывается недопустимым размещать топливные сборки с МОКС в непосредственной близости от управляющих стержней (в основном, именно из-за этого нельзя заменить на МОКС более чем одну треть загруженного в реактор уранового топлива). При использовании МОКС тепловой реактор менее стабилен, остановить его сложнее. Период разгона реактора уменьшается в два раза, на что не рассчитаны штатные системы управления реактором типа ВВЭР.

Усиление отрицательности некоторых коэффициентов реактивности при низкой степени обогащения плутония: коэффициент реактивности описывает изменение скоростей реакции деления (и, следовательно, мощности) в результате различных изменений ситуации в активной зоне, таких как, появление пустот в охладителе, изменение температуры замедлителя (воды), температуры топлива и т.п.

Усиление пика мощности. Из-за интенсивного поглощения медленных нейтронов плутонием возникает тенденция к неравномерному распределению мощности в активной зоне, с максимумом на границе между UO 2 и МОКС, и особенно на границе между водой и МОКС-топливом. Для смягчения этого эффекта используют специальные конфигурации активной зоны со специально подобранными постепенно меняющимися уровнями обогащения в пределах топливной сборки. Это резко усложняет изготовление топливных стержней и их объединение в сборку; если же при этом будет допущена ошибка, возникает опасность аварии.

Сокращение доли запаздывающих нейтронов. Часть нейтронов испускается сразу при распаде ядра (они существуют затем в среднем еще одну микросекунду), а некоторые испускаются из ядер, возникших в результате деления ядра, с задержкой от десятых долей секунды до десятков секунд. Хотя доля запаздывающих нейтронов мала (0,7% и менее), контроль за ходом цепной реакции с помощью перемещения управляющих стержней, которые не могут перемещаться очень быстро, возможен только за счет этих запаздывающих нейтронов. Для 239Pu доля запаздывающих нейтронов примерно в три раза меньше, чем для 235U, что усложняет задачу контроля (особенно при высоких концентрациях 239Pu).

Ускорение износа материалов реактора. Поскольку, как указывалось выше, использование МОКС приводит к повышению средней энергии нейтронов, что в свою очередь «ускоряет процессы радиационного разрушения материалов реактора нейтронами. В результате сокращается срок службы деталей реактора, что может при определенных условиях создавать опасность аварии».

При использовании МОКСа количество плутония в активной зоне увеличивается, радиологические последствия более опасны. Достаточно упомянуть, что радиационная опасность, исходящая из свежего МОКС-топлива намного выше опасности свежего уранового топлива. Аналогично, отработанное МОКС-топливо гораздо опаснее отработанного уранового топлива (из-за повышенного содержания плутония и других трансурановых элементов)

Более высокие уровни выделения тепла и нейтронной радиации приводят к тому, что количество сложностей при транспортировке, хранении, и использовании МОКС-топлива возрастает.

Технологии, связанные с окончательным захоронением этого материала, не разработаны, существует лишь вариант иммобилизации плутония (смешивание с высокоактивными отходами и жидким стеклом/керамикой). Окончательное захоронение плутония вызывает затруднения, связанные с более высоким тепловыделением, нейтронной радиацией и критичностью. Из-за повышенного содержания плутония и других трансурановых элементов, захоронение МОКС намного сложнее, опаснее и дороже, чем захоронение традиционного ОЯТ (156).

Правда что ли, скажете вы, природный уран никому не нужен? Давайте посмотрим на потребление.

В данный момент спросом в мире пользуются следующие виды обогащенного урана:

  • 1. Природный уран (0,712%). Тяжеловодные реакторы (PHWR), например CANDU
  • 2. Слабо-обогащенный уран (2-3%, 4-5%). Реакторы типа вода-графит-цирконий, вода-вода-цирконий, реакторы ВВЭР, PWR, РБМК
  • 3. Средне обогащённый уран (15-25%), Быстрые реакторы, реакторы транспортных (ледоколы, ПАТЭС) ЯЭУ
  • 4. Высокообогащенный уран (>50%), ТрЯЭУ (подлодки), исследовательские реакторы.

Природный уран проходит только по первому пункту. Если предположить, что у нас в мире потребители урана это только коммерческие реакторы, то PHWR из них - это менее 10%. А если считать все остальное (транспортные, исследовательские) то… короче говоря природный уран ни к селу ни к городу. А значит почти любой потребитель требует наращивания процентного содержания легкого изотопа в смеси 235-238. Более того, уран используется не только в ядерной энергетике, но и в производстве брони, боеприпасов, и еще кое-чего. А там лучше иметь обедненный уран, что в принципе требует тех же процессов, только наоборот.

Про методы обогащения и будет статья.

В качестве сырья для обогащения используют не чистый металлический уран, а гексафторид урана UF 6 , который по совокупности свойств является наиболее подходящим химическим соединением для изотопного обогащения. Для химиков отметим, что фторирование урана происходит в вертикальном плазменном реакторе.
Несмотря на все обилие методов обогащения на сегодняшний день только две из них используются в промышленных масштабах - газовая диффузия и центрифуги. В обоих случаях используется газ - UF 6 .

Ближе к делу о разделении изотопов. Для любого метода эффективность разделения изотопов характеризуется коэффициентом разделения α – отношение доли «легкого» изотопа в «продукте» к его доле в первичной смеси.

Для большинства методов α лишь немного больше единицы, поэтому для получения высокой изотопной концентрации единичную операцию разделения изотопов приходится многократно повторять (каскады). Например, для газодиффузионного метода α=1.00429, для центрифуг значение сильно зависит от окружной скорости – при 250м/с α=1.026, при 600м/с α=1.233. Только при электромагнитном разделении α составляет 10-1000 за 1 цикл разделения. Сравнительная таблица по нескольким параметрам будет в конце.

Весь каскад машин по обогащению всегда разбит на ступени. В первой ступени каскада разделения поток исходной смеси разбивается на два потока: обедненный (удаляемый из каскада), и обогащенный. Обогащенный подается на 2-ю ступень. На 2-й ступени однажды обогащенный поток вторично подвергается разделению:
обогащенный поток 2-й ступени поступает на 3-ю, а ее обедненный поток возвращается на предыдущую (1-ю) и т.д. С последней ступени каскада отбирается готовый продукт с требуемой концентрацией заданного изотопа.

Коротко расскажу про основные методы разделения, применявшиеся когда либо в мире.

Электромагнитное разделение

По этому методу возможно разделить компоненты смеси в магнитном поле, причем с высокой чистотой. Электромагнитное разделение является исторически первым методом, освоенным для разделения изотопов урана.

Поскольку разделение можно выполнить с ионами урана, то конверсия урана в UF 6 в принципе - не обязательна. Этот метод дает высокую чистоту, но низкий выход при больших энергозатратах. Вещество, изотопы которого требуется разделить, помещается в тигель ионного источника, испаряется и ионизуется. Ионы вытягиваются из ионизационной камеры сильным электрическим полем. Ионный пучок попадает в вакуумную разделительную камеру в магнитном поле Н, направленном перпендикулярно движению ионов. В результате ионы движутся по своим окружностям с различными (в зависимости от массы) радиусами кривизны. Достаточно взглянуть на картинку и вспомнить школьные уроки, где все мы считали, по какому радиусу полетит электрон или протон в магнитном поле.

Схема, демонстрирующая принцип электромагнитного разделения.

Преимущество способа – использование относительно простой технологии (калютроны : CAL ifornia U niversity).
Применялся для обогащения урана на заводе Y-12 (США), имел 5184 разделительные камеры - «калютроны», и впервые позволил получить килограммовые количества 235U высокого обогащения – 80% или выше.

В Манхэттенском проекте калютоны использовались после термодиффузии – на альфа-калютроны поступало сырье 7% (завод Y-12) и обогащась до 15%. Уран оружейного качества (до 90%) получался на бета-калютронах на заводе Y-12. Альфа и бета калютроны не имеют ничего общего с альфа и бета частицами, просто это две «линии» калютронов, одна для предварительного, вторая для конечного обогащения.

Метод позволяет разделять любые комбинации изотопов, обладает очень высокой степенью разделения. Двух проходов достаточно для обогащения выше 80% из бедного вещества с исходным содержанием менее 1%. Производительность определяется значением ионного тока и эффективностью улавливания ионов - до нескольких граммов изотопов в сутки (суммарно по всем изотопам).



Один из цехов электромагнитного разделения в Ок-Ридже (США)



Гигантский альфа-калютрон того же завода

Диффузионные методы

Диффузионные методы применялись для начального обогащения. На ряду с электромагнитным методом – исторически один из первых. Под диффузионным методом обычно понимают газовую диффузию – когда гексафторид урана нагревают до определенной температуры и пропускают через «сито» - специальной конструкции фильтр с отверстиями определённого размера.

Если пропускать газ, состоящий из двух сортов молекул (в нашем случае двух изотопов), через малое отверстие или через сетку, состоящую из большого числа малых отверстий, то оказывается, что более легкие молекулы газа проходят в большем количестве, нежели тяжелые. Существенно отметить, что это явление имеет место только тогда, когда молекулы проходят через отверстие, не сталкиваясь в нем,… т.е., когда длина свободного пробега молекулы больше диаметра отверстия. Соответственно, газ, прошедший мимо сеток, оказывается обедненным легкими молекулами. Практически же всегда имеет место обратное просачивание газа сквозь сетку, вследствие чего в действительности увеличение концентрации легкого изотопа (обогащение) оказывается несколько меньшим.

Ключевым моментом тут является фраза про размер отверстий. Первоначально сетки делали механическим способом, как сейчас – никто не знает. Более того материал - должен работать при повышенной температуре, а сами отверстия не должны закупориваться, из размер не должен меняться под действием коррозии и др. Технологии изготовления диффузионных барьеров засекречены до сих пор – такие же ноу-хау, как и с центрифугами.

Подробнее под спойлером, из того же доклада.

«О состоянии научно-исследовательских и практических работ Лаборатории № 2 по получению урана-235 диффузионным методом»

Обогащение оказывается тем большим, чем больше перепад давления на сетке. Перепад давления создается обычно компрессором (насосом), осуществляющим движение газа между сетками. Такая система, состоящая из сеток и компрессора, движущего газ, и является разделительной ступенью

В качестве газа мы употребляем шестифтористый уран. Это соль, обладающая довольно высокой упругостью пара при комнатной температуре. Что касается сеток, то к ним предъявляется требование, чтобы диаметр отверстия их был меньше длины свободного пробега молекул шестифтористого урана. Последняя, как это хорошо известно, обратно пропорциональна давлению газа. При атмосферном давлении длина свободного пробега молекул приблизительно равна 1/10000 мм. Поэтому, если бы мы умели делать тонкую сетку с отверстиями меньше 1/10 000 мм, мы могли бы работать с газом при атмосферном давлении.

В настоящее время мы научились делать сетки с отверстиями около 5/1000 мм, т.е. в 50 раз большими длины свободного пробега молекул при атмосферном давлении. Следовательно, давление газа, при котором разделение изотопов на таких сетках будет происходить, должно быть меньше 1/50 атмосферного давления. Практически мы предполагаем работать при давлении около 0,01 атмосферы, т.е. в условиях хорошего вакуума. Многократное обогащение газа при непрерывном процессе работы может быть осуществлено при помощи каскадной установки, состоящей из большого числа ступеней, соединенных последовательно. Расчет показывает, что для получения продукта, обогащенного до концентрации в 90% легким изотопом (такая концентрация достаточна для получения взрывчатого вещества), нужно соединить в каскад около 2000 таких ступеней. В проектируемой и частично изготовленной нами машине рассчитывается получить 75-100 г урана-235 в сутки. Установка будет состоять приблизительно из 80-100 «колонн», в каждой из которых будет смонтировано 20-25 ступеней. Общая площадь сеток (площадью сеток определяется производительность всей установки) составит около 8000 м 2 . Общая мощность, расходуемая компрессорами, составит 20 000 кВт.

К тому же хороший вакуум, что требует достаточно большой мощности компрессорного оборудования, и наличие большого количества аппаратуры контроля герметичности (что, в принципе в современном мире не проблема, но в статье речь шла о послевоенном времени где надо было все, сразу и быстро).

Применялся как одна из первых ступеней обогащения. В Манхэттенском проекте завод К-25 обогащал уран с 0.86% до 7%, далее сырье шло на калютроны. В СССР – многострадальный завод Д-1, а так же последовавшие за ним заводы Д-2 и Д-3, и так далее.

Так же под «диффузионным» методом разделения иногда понимают жидкостную диффузию – тоже, только в жидкой фазе. Физический принцип - более легкие молекулы собираются в более нагретой области. Обычно разделительная колонка состоит из двух коаксиально расположенных труб, в которых поддерживаются различные температуры. Разделяемая смесь вводится между ними. Перепад температур ΔТ приводит к возникновению конвективных вертикальных потоков, а между поверхностями труб создаётся диффузионный поток изотопов, что приводит к появлению разности концентрации изотопов в поперечном сечении колонки. Вследствие этого более лёгкие изотопы накапливаются у горячей поверхности внутренней трубы и движутся вверх. Термодиффузионный метод позволяет разделять изотопы как в газообразной, так и в жидкой фазе.

В Манхэттенском проекте это завод S-50 – он обогащал природный уран до 0.86%, т.е. всего в 1.2 раза увеличивал обогащение по пятому урану. В СССР работы по жидкостной диффузии велись Радиевым институтом в послевоенное время, но никакого развития это направление не получило.


Каскад машин газодифузионного разделения изотопов.
Подписи на патенте - Ф. Саймон, К. Фукс, Р. Пайерлс.

Аэродинамическая сепарация

Аэродинамическая сепарация это своего рода вариант центрифугирования, но вместо закручивания газа он завихряется в специальной форсунке. Вместо тысячи слов – см. рисунок, т.н. «сопло Беккера» для аэродинамического разделения изотопов урана (смесь водорода и гексафторида урана) при пониженном давлении. Гексафторид урана очень тяжелый газ и приводит к износу мелких деталей форсунок (см. масштаб), и может переходит в твёрдое состояние на участках повышенного давления (например на входе в форсунку), по этому гексафторид разбавляют водородом. Понятно, что при 4% содержании сырья в газе, да еще и пониженном давлении эффективность такого способа не велика. Развивалась этот способ пытались в ЮАР и ФРГ.



Все что вам нужно знать о аэродинамической сепарации есть на этой картинке


Варианты форсунок

Газовое центрифугирование

Наверное каждый человек (а гик уж и подавно!) слышавший хоть раз атомную энергетику, бомбы и обогащение, в общих чертах знает что такое центрифуга, как она работает и что в конструировании таких приборов есть много сложностей, секретов и ноу-хау. Поэтому про газовое центрифугирование скажу буквально пару слов. Однако, чесно говоря, газовые центрифуги имеют очень богатую историю развития и заслуживают отдельной статьи.

Принцип работы – разделение за счет центробежных сил в зависимости от абсолютной разницы в массе. При вращении (до 1000 об/с, окружная скорость – 100 - 600 м/с) более тяжелые молекулы уходят на периферию, более легкие – в центре (у ротора). Этот метод на данный момент является самым продуктивным и дешевым (исходят из цены $/EPP).

Гугл изибилует схематичными картинками устройства центрифуги, я лишь приведу пару фотографий как выглядит собранный каскад. В таком помещении кстати говоря достаточно жарко – гексафоторид урана там находится далеко не при комнатной температуре, и весь такой каскад нужно еще и охлаждать.



Каскад центрифуг фирмы URENCO. Большие, метра под 3 в высоту.



Бывают и поменьше, около полуметра. Наши отечественные.



Для понимания масштабов, или что такое «цех от горизонта до горизонта».

Лазерное обогащение

Физический принцип лазерного обогащения в том, что атомные энергетические уровни различных изотопов незначительно отличаются.
Этот эффект может быть использован для разделения U-235 от U-238, как в атомарном - AVLIS, так и в молекулярном виде - МLIS.

В методе используются пары урана, и лазеры, которые точно настроены на определенную длину волны, возбуждая атомы именно 235-го урана. Далее ионизированные атомы удаляются из смеси электрическим или магнитным полем.

Технология очень простая, и, вобще говоря, не требует каких то супер-сложных механических устройств типа диффузионных сеток или центрифуг, одна есть и другая проблема.
В сентябре 2012 года компания Global Laser Enrichment LLC (GLE) – консорциум General Electric, Hitachi и Cameco – получила лицензию Комиссии по ядерному регулированию (NRC) США на строительство лазерного разделительного завода мощностью до 6 млн ЕРР на площадке действующего совместного предприятия GE, Toshiba и Hitachi по фабрикации топлива в Уилмингтоне, штат Северная Каролина. Планируемое обогащение - до 8%. Однако лицензирование приостановили - по причине проблем с распространением технологии. Современные технологии обогащения (диффузионная и центрифугирование) требуют специального оборудования, настолько специального, что, вобще говоря, при желании через мониторинг международных контрактов можно косвенно предположить, кто собирается «по тихому» (без ведома МАГАТЭ) обогащать уран или вести работы по этому направлению. И такой мониторинг действительно ведется. В случае, если лазерный метод обогащения докажет свою простоту и эффективность, работы по оружейному урану могут начать вести там, где это не очень нужно. По этому пока лазерный метод как то подминают.


К лазерным методам можно отнести так же и молекулярный метод, основанный на том, что на инфракрасных или ультрафиолетовых частотах происходит избирательное поглощение газом 235 UF 6 инфракрасного спектра, что в дальнейшем позволяет использовать метод диссоциации возбужденных молекул или химическое разделение.
Относительное содержание U-235 может быть увеличено на порядок уже в первой стадии. Таким образом, одного прохода достаточно, чтобы обеспечить обогащение урана, достаточное для ядерных реакторов.



Пояснения к «молекулярному» методу с химическим разделением.

Преимущества лазерного обогащения:

  • Потребление электроэнергии: в 20 раз менее, чем для диффузии.
  • Каскадность: число каскадов (от 0,7% до 3-5% по U-235) – менее 100, по сравнению с 150 000 центрифуг.
  • Стоимость завода – существенно меньше.
  • Экологичность: вместо гексафторида урана используется менее опасный металлический уран.
  • Потребность в природном уране – на 30% меньше.
  • На 30% меньше хвостохранилищ (хранилища отвала).

Сравнение показателей различных методов


Обогащение урана в России

В настоящее время в России действует четыре обогатительных комбината:

На этом все. Спасибо за внимание.

В сообщении посла Ирака в ООН Мохаммеда Али аль-Хакима от 9 июля говорится, что в распоряжение экстремистов ИГИЛ (Исламское государство Ирака и Леванта) . МАГАТЭ (Международное агентство по атомной энергии) поспешило заявить, что использованные Ираком ранее ядерные вещества имеют низкие токсические свойства, а потому захваченные исламистами материалы .

Источник в правительстве США, знакомый с ситуацией, сообщил агентству Reuters, что похищенный боевиками уран, вероятнее всего, не является обогащённым, поэтому едва ли может быть использован для изготовления ядерного оружия. Власти Ирака официально уведомили Организацию Объединённых Наций об этом инциденте и призвали «предотвратить угрозу его применения», сообщает РИА «Новости».

Соединения урана крайне опасны. О том, чем именно, а также о том, кто и как может производить ядерное топливо, рассказывает АиФ.ru.

Что такое уран?

Уран — химический элемент с атомным номером 92, серебристо-белый глянцеватый металл, периодической системе Менделеева обозначается символом U. В чистом виде он немного мягче стали, ковкий, гибкий, содержится в земной коре (литосфере) и в морской воде и в чистом виде практически не встречается. Из изотопов урана изготавливают ядерное топливо.

Уран — тяжёлый, серебристо-белый глянцеватый металл. Фото: Commons.wikimedia.org / Original uploader was Zxctypo at en.wikipedia.

Радиоактивность урана

В 1938 году немецкие физики Отто Ган и Фриц Штрассман облучили ядро урана нейтронами и сделали открытие: захватывая свободный нейтрон, ядро изотопа урана делится и выделяет огромную энергию за счёт кинетической энергии осколков и излучения. В 1939-1940 годах Юлий Харитон и Яков Зельдович впервые теоретически объяснили, что при небольшом обогащении природного урана ураном-235 можно создать условия для непрерывного деления атомных ядер, то есть придать процессу цепной характер.

Что такое обогащённый уран?

Обогащённый уран — это уран, который получают при помощи технологического процесса увеличения доли изотопа 235U в уране. В результате природный уран разделяют на обогащённый уран и обеднённый. После извлечения 235U и 234U из природного урана оставшийся материал (уран-238) носит название «обеднённый уран», так как он обеднён 235-м изотопом. По некоторым данным, в США хранится около 560 000 тонн обеднённого гексафторида урана (UF6). Обеднённый уран в два раза менее радиоактивен, чем природный, в основном за счёт удаления из него 234U. Из-за того что основное использование урана — производство энергии, обеднённый уран — малополезный продукт с низкой экономической ценностью.

В ядерной энергетике используют только обогащённый уран. Наибольшее применение имеет изотоп урана 235U, в котором возможна самоподдерживающаяся цепная ядерная реакция. Поэтому этот изотоп используют как топливо в ядерных реакторах и в ядерном оружии. Выделение изотопа U235 из природного урана — сложная технология, осуществлять которую под силу не многим странам. Обогащение урана позволяет производить атомное ядерное оружие — однофазные или одноступенчатые взрывные устройства, в которых основной выход энергии происходит от ядерной реакции деления тяжёлых ядер с образованием более лёгких элементов.

Уран-233, искусственно получаемый в реакторах из тория (торий-232 захватывает нейтрон и превращается в торий-233, который распадается в протактиний-233 и затем в уран-233), может в будущем стать распространённым ядерным топливом для атомных электростанций (уже сейчас существуют реакторы, использующие этот нуклид в качестве топлива, например KAMINI в Индии) и производства атомных бомб (критическая масса около 16 кг).

Сердечник снаряда калибра 30 мм (пушки GAU-8 самолёта A-10) диаметром около 20 мм из обеднённого урана. Фото: Commons.wikimedia.org / Original uploader was Nrcprm2026 at en.wikipedia

В каких странах производят обогащённый уран?

  • Франция
  • Германия
  • Голландия
  • Англия
  • Япония
  • Россия
  • Китай
  • Пакистан
  • Бразилия

10 стран, дающих 94 % мировой добычи урана. Фото: Commons.wikimedia.org / KarteUrangewinnung

Чем опасны соединения урана?

Уран и его соединения токсичны. Особенно опасны аэрозоли урана и его соединений. Для аэрозолей растворимых в воде соединений урана предельно допустимая концентрация (ПДК) в воздухе 0,015 мг/м³, для нерастворимых форм урана ПДК — 0,075 мг/м³. При попадании в организм уран действует на все органы, являясь общеклеточным ядом. Уран практически необратимо, как и многие другие тяжёлые металлы, связывается с белками, прежде всего, с сульфидными группами аминокислот, нарушая их функцию. Молекулярный механизм действия урана связан с его способностью подавлять активность ферментов. В первую очередь поражаются почки (появляются белок и сахар в моче, олигурия). При хронической интоксикации возможны нарушения кроветворения и нервной системы.

Применение урана в мирных целях

  • Небольшая добавка урана придаёт красивую жёлто-зелёную окраску стеклу.
  • Уран натрия используется как жёлтый пигмент в живописи.
  • Соединения урана применялись как краски для живописи по фарфору и для керамических глазурей и эмалей (окрашивают в цвета: жёлтый, бурый, зелёный и чёрный, в зависимости от степени окисления).
  • В начале XX века уранилнитрат широко применялся для усиления негативов и окрашивания (тонирования) позитивов (фотографических отпечатков) в бурый цвет.
  • Сплавы железа и обеднённого урана (уран-238) применяются как мощные магнитострикционные материалы.

Изотоп — разновидности атомов химического элемента, которые имеют одинаковый атомный (порядковый) номер, но при этом разные массовые числа.

Элемент III группы таблицы Менделеева, принадлежащий к актиноидам; тяжёлый слаборадиоактивный металл. Торий имеет ряд областей применения, в которых подчас играет незаменимую роль. Положение этого металла в периодической системе элементов и структура ядра предопределили его применение в области мирного использования атомной энергии.

*** Олигурия (от греч. oligos — малый и ouron — моча) — уменьшение количества отделяемой почками мочи.

В статье рассказывается о том, зачем обогащать уран, что это такое, где добывается, его применения и из чего состоит процесс обогащения.

Начало атомной эры

Такое вещество как уран известно людям с самой глубокой древности. Но в отличие от нашего времени, использовали они его лишь для создания специальной глазури для керамики и некоторых видов краски. Использовалась для этого природная окись урана, залежи которого можно найти в тех или иных количествах почти на всех континентах мира.

Гораздо позже этим элементом заинтересовались и химики. Так, в 1789 году немецкому ученому Мартину Клапроту удалось получить оксид урана, который по своим параметрам был похож на металл, но им не являлся. И лишь в 1840 году французский химик Пелиго синтезировал настоящий уран - тяжелый, серебристый и который Дмитрий Менделеев внес в свою таблицу периодических элементов. Так для чего нужно обогащать уран и как это происходит?

Наше время

По сути, природная мало чем отличается от остальных. Это массивные булыжники ржавого цвета, которые добывают в шахтах самым обычным способом - взрывают пласты залежей и транспортируют на поверхность для последующей обработки. Дело в том, что природное это вещество содержит в себе всего лишь 0,72 % изотопа U235. Этого недостаточно для применения в реакторах или оружии, и потом после сортировки его переводят в газообразное состояние и начинают обогащать уран.

Вообще, методов этого процесса существует много, но самым перспективным и используемым в России является газовое центрифугирование.

В специальные установки закачивается газообразное соединение урана, после чего те раскручиваются до огромных скоростей и происходит отделение более тяжелых молекул от легких и группирование их у стенок барабана.

Затем эти фракции разделяют и одну из них превращают в диоксид урана - плотное и твердое вещество, которое потом фасуют на своеобразные «таблетки» и обжигают в печи. Именно для этого и нужно обогащать уран, поскольку на выходе процентное содержание изотопа U235 на порядок больше, и его можно применять как в реакторах, так и в оружейных системах.

Экспорт

Если приводить упрощенный пример, то обогащение этого элемента по сути своей чем-то напоминает производство железа - в изначальном, природном виде это ни на что не годные куски руды, которые потом различной обработкой превращают в крепкую сталь.

Также в прессе часто можно услышать тот факт, что многие менее развитые по сравнению с той же Россией страны часто задаются вопросом, как сделать обогащенный уран?

Дело в том, что процесс этот если приводить пример с газовым центрифугированием очень сложный, и построить подобные установки могут далеко не все. Тем более, нужна не одна-единственная штука, а целый их каскад. Для того, чтобы осознать их технический уровень, стоит сказать, что вращаются эти «барабаны» со скоростью 1500 оборотов в минуту и без остановки. Рекорд - 30 лет! Потому, некоторые страны закупают обогащенный уран в России.

Где добывают уран в России?

Добыча 93% урановой руды производится в Забайкалье, рядом с городом Краснокаменск. А обогащенный уран в России производит «ОАО ТВЭЛ».

Применение

С процессом превращения в высокоэффективное соединение разобрались, но зачем он нужен? Разберем два самых основных направления.

Первое, это конечно же, Они дают электричество целым городам, питают автономные космические аппараты для исследования дальних уголков нашей солнечной системы, стоят на подводных лодках, ледоколах, исследовательских кораблях.

Второе, это Правда стоит уточнить - именно уран в бомбах давно уже не применяется, ему на смену пришел Добывается он посредством специального облучения в реакторах низкообогащенного урана.

Часто еще в годы СССР бытовало мнение, что особо опасных преступников или «врагов народа» ссылают на урановые шахты, чтобы те своим скоротечным трудом искупили вину. И естественно, долго они там не задерживались из-за радиации.

На самом деле это не так. Никакой особой опасности в работе на такой добыче нет, природная руда мало радиоактивна, и человек, если его поместить безвылазно в шахту, погибнет скорее от недостатка солнца и свежего воздуха, чем лучевой болезни.

Тем не менее, условия труда у рабочих щадящие, всего 5 часов в день, и многие работают там целыми поколениями, развенчивая миф о страшной губительности такого производства.

А из кстати, делают сердечники оружейных снарядов. Дело в том, что уран намного тяжелее и прочнее свинца, в результате чего такие поражающие элементы эффективнее, да и еще имеют свойство воспламеняться в результате разрушения, после механического воздействия на них.

Так что мы разобрались с тем, зачем нужен обогащенный уран, где он применяется и с какой целью.

ОБОГАЩЕНИЕ ЯДЕРНОГО ТОПЛИВА, отделение хорошо расщепляемого изотопа урана, урана 235, от преобладающего изотопа, урана 238. Газообразный фторид урана (VI) проходит диффузионное разделение, при котором используется ряд перегородок с… … Научно-технический энциклопедический словарь

ОБОГАЩЕНИЕ - (1) дутья введение кислорода в атмосферный воздух для интенсификации технологического процесса при плавке металла (см.), (2) О. полезных ископаемых совокупность различных методов обработки руд чёрных, цветных и благородных металлов, угля и др.… … Большая политехническая энциклопедия

Uranium ore processing совокупность процессов первичной обработки минерального урансодержащего сырья, имеющих целью отделение урана от других минералов, входящих в состав руды. При этом не происходит изменения состава минералов, а лишь их… … Термины атомной энергетики

обогащение урановой руды - Совокупность процессов первичной обработки минерального ураносодержащего сырья, имеющих целью отделение урана от других минералов, входящих в состав руды. При этом не происходит изменения состава минералов, а лишь их механическое разделение с… … Справочник технического переводчика

Радиометрическое обогащение руды процессы переработки руд, основанные на взаимодействии различных видов излучений с веществом. В технологии радиометрического обогащения руд выделяются два вида процессов: Радиометрическая сортировка … … Википедия

- (англ. magnetic separation, magnetic concentration of minerals; нем. magnetische Aufbereitung f der Bodenschätze) обогащение полезных ископаемых, основывающееся на действии неоднородного магнитного поля на минеральные частички с… … Википедия

- (a. chemical refining; н. chemische Aufbereitung; ф. concentration par voie chimique, enrichissement chimique; и. tratamiento quimico, preparacion quimica, elaboracion quimica) технология первичной переработки руд, коллективных и… … Геологическая энциклопедия

Уран это основной энергоноситель ядерной энергетики, вырабатывающей около 20% мировой электроэнергии. Урановая промышленность охватывает все стадии производства урана, включая разведку месторождений, их разработку и обогащение руды. Переработку… … Энциклопедия Кольера

Почти готово к работе … Википедия

Топливный элемент ядерного реактора Ядерное топливо вещество, которое используется в ядерных реакторах для осуществления цепной ядерной реакции деления. Содержание 1 Общая информация 2 Классификация … Википедия

Книги

  • «Роза» Исфахана , Михель Гавен , 2000-е годы. Иран. В районе города Исфахан происходит землетрясение с большими разрушениями и жертвами. Понимая, что собственными силами не справиться, иранские власти вынуждены обратиться за… Категория: