Прокатные станы на новолипецком и череповецком металлургических заводах. Полосовые станы горячей прокатки — Высокая производительность для новых и существующих станов Номенклатура продукции ОАО «ММК»


2.2.3. Непрерывный широкополосный Стан 2000

горячей прокатки ЛПЦ-10 ОАО «ММК»

Непрерывный широкополосный стан 2000 горячей прокатки предназначен для производства горячекатаных полос из углеродистых и низколегированных марок сталей. Состоит из:


  • участка подачи слябов к печам и загрузки слябов;

  • черновой группы оборудования;

  • секции промежуточного рольганга и летучих ножниц;

  • чистовой группы оборудования;

  • уборочной группы оборудования.
Основной агрегат листопрокатного цеха №10 ОАО «ММК» - непрерывный широко­полосный стан «2000» - позволяет получать листовой прокат толщиной 1,5-2,0 мм и шириной 900-2000 мм со смоткой в рулон. На специальном обору­довании производится порезка рулонов в листы и роспуске штрипсы. Имеет­ся оборудование для получения двух- трехслойной стали с основным слоем из углеродистых и низколегированных марок стали и плакирующим слоем из нержавеющих и инструментальных марок. Такой металл может заменить не­ржавеющие стали в судостроении, вагоностроении, сельскохозяйственном и пищевом машиностроении.

Стан 2000 конструкции НКМЗ предназначен для горячей прокатки стальной полосы шириной 1000-1850 мм и толщиной 1,2-16 мм из литых слябов толщиной 230-300 мм, длиной 10,5 м, массой до 36 т, получаемых на машинах непрерывного литья заготовок (МНЛЗ). Максимальная скорость прокатки 27 м/с (предусмотрена возможность увеличения массы сляба до 45 т и скорости прокатки до 30 м/с) (рис. 1).

Рис. 1. План расположения оборудования цеха горячей прокатки с непрерывным широкополосным станом 2000 Рабочие червовые клети: 1 - двухвалковая; 2-универсальная четырехвалковая; 3, 4, 5 - непрерывная трехклетевая гpyппa универсальных четырехвалковых клетей. Рабочие чистовые клети: 6-13 - непрерывная числовая груши; 14 - вертикальная черновая двухвалковая клеть - окалиноломатель; 15-чистовой окалиноломатель; 16 - летучие барабанные ножницы; 17-моталки дли полосы толщиной 1,2-4 мм; 18 - моталки для полосы толщиной 4-16 мм; 19 - тележка с кантователем" рулонов; 20- поворотный стол для рулонов; 21 - тележка для слябов; 22- подъемный стол; 23 - сталкиватель слябов; 24- печной загрузочный рольганг, 25 - толкателя печные; 26 - тележка для передачи слябов; 27-прнеыннк слябов на печи; 28- печной разгрузочный рольганг, 29 - рольганги черновых клетей; 30 - промежуточный рольганг; 31 - отводящие душирующие рольганги; 32 - транспортеры рулонов; 33 - передаточные тележки; 34-нагревательные печи с шагающими балками; 35 - яма для сбора окалины; 56 - устройство для комплектной смены валков

Со склада слябы подаются краном с клещевым захватом (масса стопы слябов 120 т) на загрузочные тележки, которые транспортируют их к подъ­емным столам; слябы по одному сталкиваются реечными толкателями на рольганг, взвешиваются на весах и толкателями загружаются в печи. Преду­смотрена также возможность подачи слябов к печам, минуя склад при помо­щи поперечного загрузочного устройства. Для нагрева слябов раньше применяли методические печи с моно­литным подом: слябы в печи передвигались загрузочным толкателем по водоохлаждаемым (глиссажным) трубам, уложенным на подине внутри печи. При этом на нижней поверхности слябов в местах их соприкосновения с водоохлаждаемыми трубами образуются темные (менее нагретые) пятна, что приводит к ухудшению качества полосы при прокатке. Во время ремонта пе­чи для извлечения слябов из печи требуется много времени, так как эта опе­рация недостаточно механизирована.

Во время «горячих простоев» стана (по различным причинам) слябы находятся в печи, поэтому угар металла увели­чивается.

На новом стане 2000 для нагрева слябов до 1250°С применены четыре методические печи с шагающими балками (рис. 2, а). Под печи состоит из десяти продольных балок: четырех подвижных 1 и шести неподвижных 2.

Рис. 2. Нагревательная методическая печь с шагающими балками:

а - поперечный разрез печи; б - приемник слябов из печи
Все балки представляют собой пространственные продольные рамы из тол­стостенных водоохлаждаемых труб. Чтобы не допустить образования холод­ных пятен на нижней поверхности слябов, на балках установлены накладки (рейторы) 3 из жаропрочной стали с шагом 250 мм.

Подвижные балки при помощи расположенного внизу гидропривода 4 поднимаются вверх на 200 мм и перемещаются по горизонтали на 480 мм, т. е. эти балки «шагают» вдоль печи, перекладывая слябы на один шаг на не­подвижные балки. Цикл перемещения подвижных балок 60 с. Печь отаплива­ется природным газом (8400 ккал/м 3) при помощи верхних 5 и боковых ниж­них 6 горелок; ширина пода 11,25 м, длина 49,6 м; активная площадь пода 500 м; производительность печи (при холодном всаде) 300 т/ч.

После нагрева слябы с торца печей выгружаются специальным при­емным устройством (рис. 2,б), имеющим привод перемещения штанг 1, зуб­чатой рейкой 2 и привод подъема стола 3 при помощи гидроцилиндра 4.

Очередной нагретый сляб толкателем на загрузочной стороне печи по­дается к окну выдачи. Концы штанг, расположенные между роликами роль­ганга 5, входят под сляб в проемы в поде печи; затем штанги со слябом под­нимаются на 150 мм, выдвигаются из окна печи и, опускаясь плавно (без удара), укладывают сляб на ролики рольганга; по рольгангу сляб направляет­ся к вертикальному окалиноломателю. Стан 2000 состоит из 13 горизонтальных рабочих клетей: пяти чер­новых (одна двухвалковая и четыре универсальные четырехвалковые) и не­прерывной чистовой группы из восьми четырехвалковых клетей. Перед пер­вой черновой горизонтальной двухвалковой клетью установлена вертикаль­ная двухвалковая клеть (рис. 3, а): диаметр вертикальных валков 1200 мм, длина бочки 650 мм; валки 1 установлены на подшипниках качения 2 и име­ют привод от двух электродвигателей постоянного тока мощностью по 630 кВт, 365 об/мин, установленных наверху рабочей клети, через двойные двух­ступенчатые редукторы 3 (1=23) и вертикальные универсальные шпиндели 4. Эта клеть предназначена для предварительной ломки печной первичной окалины на слябе, формирования точного размера ширины (боковое обжатие сляба до 100 мм, давление на вертикальные валки до 600 т, момент прокатки до 120 тм) и называется также черновым окалиноломателем. Разрыхленная окалина удаляется гидросбивом под давлением 150 ат. Вода подается через сопла, расположенные в шахматном порядке в верхних и нижних коллекто­рах. Слябы поступают в валки со скоростью 1 м/с; для улучшения задачи сляба в валки и приема его из валков с обеих сторон клети имеются станин­ные ролики с индивидуальным приводом от электродвигателей постоянного тока. Черновая горизонтальная двухвалковая клеть № 1 (рис. 3, б) является первой клетью для обжатия сляба по толщине (на 50-70 мм). Диаметр вал­ков 1400 мм, длина бочки 2000 мм, максимальное давление металла на валки 2400 тс, максимальный момент прокатки 480 тс-м; скорость прокатки 1,25 м/с. Валки установлены в подшипниках жидкостного трения (ПЖТ) и приво­дятся во вращение от синхронного электродвигателя мощностью 5000 кВт, 375 об/мин через редуктор (г-22,3) и шестеренную клеть (Л - 1400 мм). Уравновешивание верхнего валка - гидравлическое, от гидроцилиндра, рас­положенного на верхней траверсе, соединяющей станины.

Черновые универсальные четырехвалковые клети № 2, 3, 4 и 5 - оди­наковые по конструкции. Горизонтальная клеть (рис. 4) имеет опорные валки диаметром 1600 мм и рабочие 1180 мм; длина бочки валков 2000 мм. Рабочие валки клети № 2 имеют привод от такого же электродвигателя, что и валки клети № 1, через редуктор /=15,4 и шестеренную клеть; скорость про­катки 1,5 м/с.

Рис. 3. Черновой двухвалковый окалиноломатель с вертикальными валками 1200X650 мм (а) и черновая двухвалковая клеть с горизонтальными валками 1400X2000 мм (6)

Рис. 4. Черновая универсальная четырехвалковая клеть 1200/1600X2000
Опорные валки всех клетей установлены на подшипниках жидкостного трения (ПЖТ), рабочие - на подшипниках качения. Под подушками опор­ных валков установлены месдозы для измерения давления на валки при про­катке. Для фиксации подушек в осевом направлении применены защелки, перемещаемые гидроцилиндрами, установленными на станине.

Клеть вертикальных валков установлена перед четырехвалковой кле­тью; диаметр валков 1000 мм, длина бочки 470 мм; валки приводятся от электродвигателя мощностью 640 кВт, 700 об/мин через редуктор, располо­женный на верху клети, и вертикальные шпиндели.

В отличие от ранее установленных непрерывных широкополосных ста­нов на новом стане 2000 три последние черновые универсальные четырехвалковые клети № 3, 4 и 5 представляют собой непрерывную группу; расстояние между клетями 10 и 11 м; все клети этой группы имеют привод от электродвигателей постоянного тока с регулируемой скоростью; черновая полоса (подкат из сляба) одновременно (непрерывно) прокатывается во всех трех клетях и при толщине 30-50 мм поступает на промежуточный рольганг для «выравнивания» температуры по всей длине.

Применение непрерывной группы из трех черновых клетей (вместо по­следовательного расположения их на большом расстоянии друг от друга) имеет следующие преимущества:


  1. уменьшается длина черновой группы стана на 40-50 м, длина зда­ния цеха и длина промежуточных рольгангов; уменьшается стоимость здания и оборудования стана;

  2. улучшается температурный режим прокатки, т. е. обеспечивается меньшее понижение температуры металла за счет сокращения длины роль­гангов и возможности регулирования скорости прокатки (в пределах от 0,5 до 1,75 м/с в клети № 3 до 2,5-5 м/с в клети № 5).
Рабочая четырехвалковая клеть № 3 имеет привод валков от двух элек­тродвигателей постоянного тока мощностью 2X6300 кВт, 110/240 об/мин че­рез общий редуктор 1=3,4 и шестеренную клеть Л = 1400 мм. Рабочая четы­рехвалковая клеть № 4 имеет аналогичный привод. Последняя рабочая четы­рехвалковая клеть № 5 трехклетевой непрерывной черновой группы имеет безредукторный привод от двухъякорного электродвигателя постоянного то­ка мощностью 2X6300 кВт, 55/140 об/мин через шестеренную клеть А=1400 мм. Максимальное давление металла в черновых универсальных клетях: на горизонтальные валки 3300 тс, на вертикальные валки 260-150 те. Максимальные крутящие моменты в клетях кварто 430-350 тс-м. За двухвалковой клетью № 1 и черновыми универсальными клетями № 2, 3 и 4 установлены коллекторы для гидросбива окалины водой высокого давления.

Все восемь четырехвалковых клетей (№ 6-13) (рис. 5) чистовой непрерывной группы расположены на расстоянии 6 м одна от другой (рис. 6). Диаметр валков: опорных 1600 мм, рабочих 830 мм; опорные валки установ­лены на ПЖТ, рабочие - на подшипниках качения. Длина бочки валков 2000 мм. Все клети имеют безредукторный привод от двухъякорных электродви­гателей постоянного тока: клети № 6 и 7-2X6000 кВт, 55/140 об/мин через шестеренные клети с межосевым расстоянием А = 1120 мм; клети № 8 и 9 - 2X6300 кВт; 110/220 об/мин через шестеренные клети Л = 900 мм; клети № 10 и 11 - 2X6300 кВт 190/380 об/мин через шестеренные клети Л = 900 мм; клети № 12 и 13 - 2X4800 кВт, 250/600 об/мин через шестеренные клети Л = 800 мм. Максимальные давления металла на валки при прокатке в клетях № 6-13 1700-3200 тс; максимальные моменты прокатки 40-230 тс-м; максимальные скорости прокатки 5-27 (30) м/с. Скорость перемещения на­жимных винтов 0,5-1 мм/с. Литые стальные станины имеют прямоугольные стойки; сечение стойки около 8600 см 2 . Рабочая клеть - четырехвалковая, при максимальном давлении металла на валки при прокатке имеет повышен­ную жесткость (850 тс/мм). С целью повышения качества поверхности поло­сы и уменьшения ее разнотолщинности на последних трех клетях применяет­ся противоизгиб рабочих валков при помощи гидравлических устройств.

Первая чистовая четырехвалковая клеть удалена от последней уни­версальной черновой четырехвалковой клети на 140 м; здесь расположены промежуточный рольганг и рольганг перед ножницами длиной около 127 м, летучие ножницы и чистовой окалиноломатель. На промежуточном рольган­ге температура полосы-подката (толщиной 30-50 мм) «выравнивается» по длине (до 1050-1150° С в зависимости от марки стали); рольганг имеет чу­гунные полые ролики с индивидуальным приводом, направляющие подвижные линейки с гидроприводом и сбрасыватель раската с реечным приводом, используемый в случае необходимости удаления полосы, имеющей дефекты или пониженную температуру, с линии стана в боковой карман.

Рис 5. Чистовая четырехвалковая клеть 800/1600x2000 Рис 6. Общий вид непрерывной чистовой группы клетей
Летучие ножницы двухбарабанного типа предназначены для обрезки переднего и заднего концов толстой полосы-подката, направляемой в первую чистовую клеть. По окружности барабанов расположены по две пары ножей: шевронные и прямые. Шевронные ножи предназначены для обрезки перед­него конца полосы с целью улучшения захвата полосы валками первой чис­товой клети и снижения ударной нагрузки на валки; прямыми ножами осу­ществляется резание заднего (неровного) конца полосы. Ножницы работают в режиме единичных запусков и имеют привод от электродвигателя мощно­стью 2100 кВт, 230 об/мин; максимальное усилие резания 300 тс; скорость резания 1 - 2 м/с.

Чистовой окалиноломатель роликового (валкового) типа предназначен для разрушения вторичной (воздушной) окалины и последующего ее удале­ния при помощи гидросбива перед прокаткой полосы в первой чистовой кле­ти кварто. Две пары прижимных роликов диаметром 500 мм при помощи пружин и рычажной системы прижимаются к полосе (с усилием 50 тс), дви­жущейся по нижним транспортным роликам рольганга. Прижимные ролики имеют привод от электродвигателя мощностью 95 кВт, 220/440 об/мин через редуктор.

Все рабочие клети имеют механизированные устройства для смены ра­бочих и опорных валков. Операция смены рабочих валков осуществляется за 8-10 мин. Между клетями имеются направляющие линейки, проводки и петледержатели.

По выходе из последней чистовой клети (при 850-950° С) полоса ох­лаждается и сматывается в рулон на ролико-барабанных моталках. Передний конец полосы выходит из последней чистовой клети стана и заправляется в моталку со скоростью не более 10 м/с (при большей скорости заправка не­возможна). Далее стан начинает работать с ускорением (0,5-1 м/с 2), и сматывание полосы в рулон может осуществляться на максимальной скорости. Первые три моталки предназначены для сматывания полосы толщиной 1,2-4 мм; две концевые моталки - для сматывания в рулон полосы толщиной 4-16 мм. Моталки имеют четыре формирующих ролика диаметром 380 мм с индивидуальным приводом, центральный приводной барабан диаметром 850 мм, тянущие ролики разного диаметра (900 и 400 мм), имеющие индивиду­альный привод от электродвигателей. Отводящий рольганг длиной около 100 м состоит из полых водоохлаждаемых роликов, установленных с перекосом в горизонтальной и вертикальной плоскостях, благодаря чему обеспечивается устойчивое положение полосы (приобретающей корытообразную форму) при ее транспортировании с большой скоростью к моталкам. По всей длине роль­ганга установлены душирующие устройства для охлаждения полосы до 600-650° С перед сматыванием ее в рулон (расход воды около 2 м 3 /с).

Рулон снимается с барабана моталки тележкой-съемником и после кан­товки в вертикальное положение устанавливается на цепной транспортер; рулоны обвязываются по диаметру узкой лентой (обручкой) на вязальной машине, маркируются термостойкой краской на специальной машине-маркировщике, взвешиваются на автоматических весах и направляются в цех холодной прокатки или в отделение резки на листы.

Для контроля и регулирования технологического процесса на стане ус­тановлены следующие приборы и устройства:

1) месдозы для измерения давления на валки во всех клетях;

2) бесконтактные толщиномеры для измерения толщины подката пе­ред первой чистовой клетью и толщины полосы, выходящей из последней чистовой клети;

3) бесконтактные шириномеры для измерения ширины подката на промежуточном рольганге и ширины полосы за последней чистовой клетью;

4) пирометры для регистрации температуры: сляба перед черновым окалиноломателем, подката на промежуточном рольганге, полосы, вы­ходящей из последней чистовой клети; полосы перед моталкой;

5) приборы для измерения натяжения полосы между клетями чистовой группы.

На стане предусмотрено широкое применение локальных систем ав­томатизации: транспортировки слябов к печам, оптимального нагрева слябов, ритма выдачи слябов из печей, оптимального режима обжатий в черновой группе клетей, работы устройств для гидросбива окалины, работы летучих ножниц, режима обжатий в чистовой группе клетей, режима охлаждения по­лосы на отводящем рольганге, скорости моталок и транспортеров с рулона­ми. Для оперативного учета всех данных от локальных систем автоматизации в цехе имеется управляющая электронная вычислительная машина (УЭВМ).

Оборудование стана расположено в многопролетном здании длиной 750 метров. Масса механического оборудования стана (без участка зачистки сля­бов и отделения отделки и резки горячекатаной полосы, расположенного в отдельном здании рядом с цехом) около 40 тыс. т. Мощность главных элек­тродвигателей привода валков всех рабочих клетей 146 тыс. кВт; мощность электродвигателей вспомогательных приводов около 50 тыс. кВт. Ритм про­катки сляба в полосу толщиной 1,2-16 мм составляет 140-90 с. Средняя производительность стана 6 млн. т в год горячекатаной полосы в рулонах.

2.2.4. Технология производства ОАО «ММК»

Рис. 7. Технология производства ОАО «ММК»

2.2.5. Номенклатура продукции ОАО «ММК»

Компания ОАО «ММК» - предприятие, имеющее полный производственный цикл, который начинается с подготовки железорудного сырья и заканчивается глубокой переработкой черных металлов.

ОАО «ММК» предлагает потребителю широчайший сортамент металлопродукции:


  • заготовка квадратная и прямоугольная для переката;

  • сортовой прокат – квадрат, катанка, круг, полоса, шестигранник, арматура, уголок, швеллер, балка, профиль.
Квадрат используется для изготовления железнодорожного крепежа, а также для изготовления металлоконструкций.

Катанка используется для изготовления проволоки, стальных канатов, металлокорда, телеграфный проводов и других метизов, а также для упаковки и обвязки пиломатериалов, металлов и других грузов.

Круг используется в производстве деталей машин и механизмов, крепежных изделий.

Полоса используется для изготовления деталей машин и механизмов, металлоконструкций.

Шестигранник используется для изготовления крепежных изделий.

Арматура периодического и гладкого профиля используется в строительстве для усиления бетонных конструкций.

Профиль специального назначения используется для укрепления шахт, изготовления деталей машин и механизмов.


  • фасонный прокат – уголок, швеллер, балка;
Уголок равнополочный и неравнополный используется для изготовления металлоконструкций, корпусов машин и другое.

Швеллер и балка используются для изготовления металлоконструкций.


  • спецпрофиль;

  • слябы;

  • плоский прокат – горячекатаный рулон, горячекатаный лист, холоднокатаный рулон, холоднокатаный лист, черная жесть, холоднокатаная лента;
Горячекатаный рулон применяется для изготовления холоднокатаных рулонов, ленты и электросварных труб.

Горячекатаный лист используется для производства корпусов судов, мостовых и других металлоконструкций, котлов и емкостей высокого давления, деталей машин и механизмов и прочих металлоизделий.

Холоднокатаный рулон используется для производства деталей машин и механизмов, сварных труб и других металлоизделий.

Холоднокатаный лист используется для производства деталей машин и механизмов, бытовой техники, товаров народного потребления и прочих металлоизделий.

Черная жесть (в рулонах и листах) используется для производства белой жести, тонкой холоднокатаной ленты (в рулонах), товаров народного потребления.

Холоднокатаная лента используется для изготовления деталей машин и механизмов, в том числе дисков колес, пружин и ленточных пил, патронов, мебельных труб, подшипников, товаров народного потребления и прочих металлоизделий, а также применяется для обвязки и скрепления грузов.


  • прокат с покрытием;

  • трубы;

  • гнутый профиль;

  • прочая продукция. (См. приложение «Сортамент продукции ОАО «ММК»)
Более половины продукции ОАО «ММК» экспортируется в различные страны мира – Ближнего Востока, Европы, Азии.

    1. 2.3. Характеристика оборудования и технологических процессов в прокатном цехе на ОАО «Северсталь»
2.3.1. Схема производства на предприятии ОАО «Северсталь»

Производство на предприятии ОАО «Северсталь» можно представить в виде схемы (рис. 8). Схема состоит из: агломератного производства, коксохимического производства, доменного производства, электросталеплавильного производства, конвекторного производства, места для разливки стали и прокатного производства.

Рис. 8. Схема производства на ОАО «Северсталь»


  1. агломератное производство;

  2. коксохимическое производство;

  3. доменное производство;

  4. электросталеплавильное производство;

  5. конвекторное производство;

  6. разливка стали;

  7. прокатное производство;

  8. трубы, сортовой прокат, чугунный профиль.
2.3.2. Прокатное производство ОАО «Северсталь»

На ОАО «Северсталь функционирует» три листопрокатных цеха. Листопрокатный цех №1 был основан в 1959 году. Строительство цеха было обусловлено острой необходимостью в листовой стали для производства труб большого диаметра. В цехе установлены 5 нагревательных печей, полунепрерывный комбинированный нагревательный стан 2800/1700. Цех имеет термическое отделение для нормализации, закалки и отпуска.

В 2005 году была произведена замена гильятинных ножниц №4 на ножницы с катящимся резом, что позволило улучшить качество реза и геометрию листа.

Череповецкий лист применяется при производстве труб для газопроводов, работающих в условиях низких температур, для генераторов электростанций, для изготовлению судов, емкостей для нефти и газа, металлоконструкций для строительства.

В листопрокатном цехе №2 установлен самый производительный стан 2000. Он состоит из пяти черновых и чистовых клетей. Прокатка ведется со скоростью до 21 метра в секунду. В цехе изготавливают металлопрокат шириной до 1850 мм и толщной от 1,2 до 16 мм, процесс управляется при помощи АСУТП. Оборудование изготовлено фирмой «Сименс».

Листовой прокат со стана 2000 используется в машиностроении, судостроении и трубной промышленности.

В 2005 году в листопрокатном цехе №2 была установлена уникальная система контроля качетсва, позволяющая отслеживать соблюдение заданных характеристик и оперативно корректировать данные парамертры на протяжении процесса прокатки, достигая необходимого уровня качества.

Также на повышение качества продукции и увелечение объема производства повлияло проведение реконструкции нагревательной печи и установка системы технологической смазки рабочих валков чистовой группы стана 2000.

В 2000 году в состав ОАО «Северсталь» вошел стан 5000 (листопрокатный цех №3). В 2005 году в листопрокатном цехе №3 введена в эксплуатацию линия резки. А в 2006 году – методическая печь и новый дополнительный пролет адъюстажа.
2.3.3. Номенклатура выпускаемой продукции ОАО «Северсталь»

Компания ОАО «Северсталь» - одна из крупнейших горнометаллургических компаний с полным производственным циклом.

Данная компания предлагает широкий спектр продукции:


  • горячекатаный стальной прокат;

  • холоднокатаный стальной прокат;

  • гнутые профили и трубы;

  • сортовой прокат;

  • коксохимическая продукция;

  • продукция шлакопереработки. (См. приложение «Сортамент продукции ОАО «Северсталь»)
ОАО «Северсталь» реализует свою продукцию не только в России, но и экспортирует ее в страны Европы, США и страны СНГ, так там она пользуется определенным спросом в этих странах.

3. Аналитическая часть


ДП. МГВМИ. 080502. 2010

Изм.

Лист

№ докум.

Подпись

Дата

Проектир.

Игнатенко М.В.

Тема: Сравнительный анализ использования трудовых ресурсов и социальной инфраструктуры на

ОАО «ММК» и

ОАО «Северсталь»


Руководитель

Петергова А.В.

Консультант

Петергова А.В.

Аналитическая часть

Кафедра экономики и менеджмента

Зав. кафедрой

Глушков А.С.

Изобретение относится к прокатному производству, в частности к оборудованию для горячей прокатки тонколистовой стали. Задача изобретения - повышение качества полосовой стали и снижение трудозатрат на производство. Стан содержит ряд последовательно расположенных черновых и чистовых клетей с горизонтальными цилиндрическими роликами в заданных межклетевых промежутках. В соответствии с изобретением между первой и второй чистовыми клетями установлен центрирующий ролик с вогнутой бочкой, имеющей круговую образующую с максимальной стрелой прогиба h, равной 0,0005...0,0008 длины бочки L, а между предпоследней и последней чистовыми клетями установлен центрирующий ролик с выпуклой бочкой, имеющей круговую образующую с h=(0,0003...0,0005)L. Ролики установлены на равном расстоянии между клетями. Изобретение обеспечивает двойной перегиб поперечного сечения полосы при транспортировке, что способствует ее центрированию.

Предлагаемое изобретение относится к прокатному производству и может быть использовано при изготовлении тонколистовой горячекатаной стали.

Такую полосовую сталь обычно прокатывают на непрерывных широкополосных станах (аналогичных станам 2000 и 2500 горячей прокатки ОАО "Магнитогорский металлургический комбинат"), содержащих последовательно установленные черновые и чистовые рабочие клети. С целью предотвращения растяжения полосы между клетями чистовой группы прокатку в них ведут с образованием небольшой петли, для поддержания которой устанавливают петледержатель с цилиндрическим горизонтальным роликом (см., например, книгу С.П.Ефименко и В.П.Следнева «Вальцовщик листопрокатных станов». - М.: Металлургия, 1980, с.78-79 и рис.676), расположенный в определенных межклетевых промежутках стана.

Известен широкополосный стан горячей прокатки, у которого между черновой группой клетей и формирующим роликом, облегчающим образование петли, расположены протяжные ролики, что улучшает температурный режим прокатки (см. а.с. СССР N1692694 кл. В 21 В 1/22, опубл. в БИ N43, 1991 г.) Недостатком этого стана является отсутствие надежного центрирования полосы по оси прокатки, что может привести к пробуксовкам валков с появлением дефектов на поверхности металла.

Наиболее близким аналогом к заявляемому объекту является широкополосный стан 2000 горячей прокатки ОАО "ММК", описываемый в технологической инструкции ТИ-101-П-ГЛ10-374-99 "Горячая прокатка полос на стане 2000 горячей прокатки", п.4.10, стр.154.

Недостатком этого стана также является ненадежное центрирование прокатываемой полосы в чистовых клетях, что может привести к ухудшению геометрии полос, появлению дефектов на металле и уменьшению производительности стана из-за необходимости снижения скорости прокатки.

Технической задачей изобретения является повышение качества и потребительских свойств тонколистовой горячекатаной стали, а также снижение трудозатрат на производство.

Для решения указанной задачи у широкополосного стана горячей прокатки, содержащего ряд последовательно расположенных черновых и чистовых клетей с горизонтальными цилиндрическими роликами в заданных межклетевых промежутках, между первой и второй чистовыми клетями установлен центрирующий ролик с вогнутой бочкой, имеющей круговую образующую с максимальной стрелой прогиба h, равной 0,0005...0,0008 длины бочки L, а между предпоследней и последней чистовыми клетями установлен центрирующий ролик с выпуклой бочкой, имеющей круговую образующую с h=(0,0003-0,0005)L, при этом ролики установлены на равном расстоянии между клетями.

Сущность заявляемого технического решения заключается в оснащении стана роликами, форма бочки которых позволяет достаточно надежно центрировать прокатываемую в чистовых клетях полосу. Это обеспечивает повышение качества полосовой стали за счет профилактики появления дефектов листового проката, таких как серповидность, волнистость кромок, порезы, геометрия полосы, вызываемых поперечным смещением полосы в валках, а также уменьшение дополнительной обрези.

Действительно, приложение вертикальных усилий к кромкам полосы (в начале чистовой группы клетей), создаваемых соответствующей формой бочки горизонтальных роликов, значительно улучшает центрирование прокатываемого металла по продольной оси стана, предотвращая его поперечное смещение, которое приводит к внеплановым остановкам стана с дополнительными трудозатратами.

При работе стана движущая полоса в начале чистовой группы клетей соприкасается с вогнутым роликом, вследствие чего боковые кромки полосы изгибаются вверх, а в конце чистовой группы выпуклый ролик изгибает эти кромки вниз. В результате этого полученный двойной перегиб поперечного сечения способствует центрированию полосы. При этом необходимо, чтобы поверхность средней части бочек обоих роликов совпала с уровнем прокатки в чистовых клетях, что достигается соответствующей установкой этих роликов по вертикали.

Опытную проверку предлагаемого устройства осуществляли на широкополосном стане 2000 горячей прокатки ОАО "ММК".

С этой целью при прокатке полос различного сортамента варьировали местоположение центрирующих роликов в чистовых клетях и форму образующей их бочек.

Наилучшие результаты (выход годного проката первого сорта в пределах 99,81% при максимальной производительности стана) получены при использовании найденного технического решения.

Уменьшение величины h (вплоть до прямолинейности образующей бочки роликов) уменьшало выход годного до 99,9% из-за возрастания вышеуказанных дефектов. Кроме того, смещение прокатываемых полос с продольной оси прокатки вынуждало снижать скорость и даже останавливать стан, что снижало производительность. Увеличение стрелы прогиба до (0,0009...0,0012)L и выпуклости до (0,0006...0,0009)L приводило в первом случае к появлению волнистости по кромкам полос, а во втором случае - к коробоватости (волнистости средней по ширине части полосы), что ухудшало качественные показатели проката.

Установка центрирующих роликов не в середине межклетевых промежутков ускоряет износ их бочек из-за возрастания вертикальной составляющей натяжения прокатываемой полосы.

Было также определено, что перестановка местоположения центрирующих роликов (с вогнутой бочкой в конце чистовой группы клетей) вызывает излишнее охлаждение середины ширины выходящей полосы, подаваемой на нее водой, что приводит к нежелательной неравномерности механических свойств металла. К аналогичному результату приводит и установка двух центрирующих роликов с вогнутой бочкой (полоса имеет желобообразное сечение). Применение же обоих роликов с выпуклой бочкой ведет к поперечному смещению прокатываемой полосы.

Контрольная прокатка на существующем стане 2000 дала выход годного проката первого сорта в пределах 99,8% с уменьшением производительности почти на 5,0%.

Таким образом, опытная проверка подтвердила приемлемость заявляемого технического решения для достижения поставленной цели и его преимущества перед известным объектом.

По данным Центральной лаборатории контроля ОАО "ММК" использование предлагаемого широкополосного стана горячей прокатки позволит повысить прибыль от реализации готового проката не менее чем на 1,0%, а трудозатраты на производство уменьшить ориентировочно на 5,0%.

Пример конкретного выполнения

На широкополосном стане 2000 горячей прокатки в чистовой его группе между 1-й и 2-й клетями в середине межклетевого промежутка установлен центрирующий ролик с L=2000 мм, имеющий вогнутую форму с h=0,00065L=0,00065×2000=1,3 мм, а между предпоследней и последней клетями (также в середине межклетевого промежутка) установлен центрирующий ролик с выпуклой бочкой, имеющей h=0,0004L=0,0004×2000=0,8 мм.

Максимальный диаметр первого из указанных роликов 360 мм, второго 360 мм.

Широкополосный стан горячей прокатки, содержащий ряд последовательно расположенных черновых и чистовых клетей с горизонтальными цилиндрическими роликами в заданных межклетевых промежутках, отличающийся тем, что между первой и второй чистовыми клетями установлен центрирующий ролик с вогнутой бочкой, имеющей круговую образующую с максимальной стрелой прогиба h, равной 0,0005...0,0008 длины бочки L, а между предпоследней и последней чистовыми клетями установлен центрирующий ролик с выпуклой бочкой, имеющей круговую образующую с h=(0,0003...0,0005)L, при этом ролики установлены на равном расстоянии между клетями.

На заключительном этапе разработки сейчас находится один из крупнейших проектов ООО "Корпоративные системы" - мультимедийная обучающая система для подготовки специалистов постов управления ПУ7 и ПУ9 широкополосного стана горячей прокатки 2000.
Непрерывный широкополосный стан 2000 горячей прокатки предназначен для производства горячекатанных полос из углеродистых и низколегированных марок сталей. Состоит из:
- участка подачи слябов к печам и загрузки слябов;
- черновой группы оборудования (ПУ7);
- секции промежуточного рольганга и летучих ножниц (ПУ9);
- чистовой группы оборудования (ПУ9);
- уборочной группы оборудования.
Проект, разрабатываемый ООО «Корпоративные системы», охватывает 5 рабочих мест:
- оператор черновой группы оборудования;
- вальцовщик черновой группы оборудования;
- оператор промежуточного рольганга и летучих ножниц;
- оператор чистовой группы;
- вальцовщик чистовой группы.
Каждое рабочее место имеет свои специфические особенности и предназначено для выполнения определенных задач. Например, основной целью черновой группы является получение выходных параметров (ширина, толщина, температура) полосы требуемого качества за шестой клетью.

Система полностью имитирует все экраны и пульты управления, которыми пользуются специалисты, тем самым, позволяя изучить работу, а также основные действия, выполняемые с их помощью. Для этого система оснащена множеством сценариев с различными видами заданий:
 тестовые вопросы (предполагают выбор пользователями одного ответа из нескольких предлагаемых);
 вопросы для самостоятельного ответа (предполагают самостоятельный ввод пользователями ответов);
 вопросы указательного типа (предполагают указание необходимых элементов на экранах или пультах управления);
 выполнение операции (предполагают выполнение пользователями требуемых операций).
В системе предусматривается два режима прохождения сценариев:
 демонстрационный (используется для обучения и характеризуется наличием различных подсказок (предназначены для закрепления пользователем теоретического материала), а также индикацией (подсветка элементов, которые необходимы для выполнения задания));
 режим тестирования (используется непосредственно для проверки знаний пользователя).

Для того, чтобы обучение было максимально приближено к реальной работе стана, в программе предусмотрена 3D-анимация, которая позволяет пользователям видеть результаты всех действий, которые они выполняют в сценариях, непосредственно на моделе стана: состояние оборудования (например, управление нажимными винтами, энкопанелями, летучими ножницами, секциями рольганга), скорость работы, возможные аварии (например, застревание слябов, загиб полосы) и т. д.

В системе также реализованы различные имитационные модели:
 модель деформационного режима;
 модель скоростного режима;
 модель температурного режима;
 модель натяжения;
 модель загрузки главных приводов и др.
Они позволяют представить процесс прокатки металла так, как он осуществляется в действительности.
Важнейшей составляющей системы является трехмерная модель стана, которая позволяет специалистам подробно изучить конструкцию оборудования черновой и чистовой групп, а также секции промежуточного рольганга и летучих ножниц.
Конструкция рассматривает не только строение групп оборудования, но и отдельные элементы (например, подробное строение клетей). Удобная навигация, подробные описания свойств и технических характеристик элементов, а также возможность настройки пользовательского интерфейса максимально облегчают процесс обучения.
Также конструкция дополнена различными видеоматериалами, посвященными работе оборудования (летучие ножницы, промрольганг, чистовая группа и т. д.), и анимационными роликами, подробно демонстрирующими технологию (работа петледержателей, технология прокатки).

Кроме того, система оснащена множеством отчетов, позволяющих получать информацию о проведенной прокатке (план проката).
Возможность просмотра результатов тестирования позволяет не только получать информацию о правильности выполненных заданий и затраченном времени, но также прослеживать операции, которые выполнял пользователь в процессе прохождения сценариев.

Воспроизведение в записи действий пользователя дает возможность в последствии визуально проследить процесс тестирования.

Таким образом, комбинированное использование компьютерной графики, анимации, «живого» видеоизображения и других медийных компонентов предоставит уникальную возможность сделать изучаемый материал максимально наглядным, а потому понятным и запоминаемым. Это особенно актуально для специалистов стана 2000, которые должны усваивать большое количество эмоционально-нейтральной информации – например, производственных инструкций, технологических карт, нормативных документов. Удобный интерфейс и навигация, подробные пользовательские и технологические инструкции делают работу с системой максимально простой.

Задание

Выполнить проект главной линии рабочей клети № 6 стана 2000 горячей прокатки.

Определить назначение и дать краткую характеристику стана 2000 горячей прокатки ЛПЦ-10, в состав которого входит проектируемая главная линия рабочей клети.

Выбрать оборудование и основные параметры проектируемой главной линии прокатной клети.

При разработке проекта главной линии рабочей клети выполнить, определить или назначить следующее:

материал, конструкцию и размеры валков; силовые воздействия на валки; расчет прочности валков; расчет коэффициента жесткости валковой системы;

тип, конструкцию и основные параметры подшипников прокатных валков;

тип и конструкцию устройств для установки и уравновешивания валков; расчет нажимного механизма;

тип, конструкцию и размеры станины и ее элементов; расчет прочности и жесткости станины;

расчет коэффициента жесткости рабочей клети;

крепление рабочей клети к фундаменту;

тип и конструкцию валковой арматуры;

выбрать тип и конструкцию передаточных механизмов главной линии прокатной клети;

выбрать тип и определить мощность главного привода клети;

выбрать тип и конструкцию устройств для перевалки валков и описать способ перевалки.

Введение

Листовой горячекатаный прокат производится на непрерывных и полунепрерывных широкополосных станах горячей прокатки (примерно 3/4 общего объема производства), полосовых станах с моталками в печах, планетарных и толстолистовых станах. В настоящее время наиболее эффективным способом производства горячекатаных листов и полос является прокатка в непрерывных и полунепрерывных станах. На этих станах прокатывается также подкат для станов холодной прокатки. Современные широкополосные станы горячей прокатки рассчитаны на прокатку полос широкого сортамента (толщина от 0,8-1,2 до 16-25 мм, ширина 600-2300 мм). Масса прокатываемых слябов до 6-7 млн. т/год.

Непрерывные станы горячей прокатки состоят из двух последовательно расположенных групп клетей. В черновой группе состоящей из четырех-пяти клетей с горизонтальными и трех-четырех клетей с вертикальными валками, полосу поочередно прокатывают в каждой из клетей. Возможно одновременное нахождение полосы в расположенных рядом клетях с горизонтальными и вертикальными валками. В чистовой группе полоса одновременно находится во всех или нескольких клетях.

Черновая группа обычно состоит из клетей кварто, что обеспечивает минимальную разнотолщинность при прокатке, и включает черновой окалиноломатель дуо и уширительную клеть. Все клети расположены последовательно и имеют индивидуальный привод.

Чистовая группа состоит из шести-семи клетей кварто и чистового окалиноломателя.

Клети оборудованы петледержателями, между ними установлены направляющие ячейки. Чистовая группа имеет в своем составе летучие ножницы для обрезки концов проката.

В данной работе изучен и обобщен опыт состояний клети № 6 широкополосного стана 2000 горячей прокатки.

1. Назначение и краткая характеристика стана

.1 Назначение стана

Непрерывный широкополосный стан 2000 горячей прокатки предназначен для производства горячекатаных полос из углеродистых и низколегированных марок сталей, соответственно с пределом прочности в холодном состоянии до 640 Н/мм2 и 750 Н/мм2, толщиной 1,2 - 16,0 мм и шириной 750-1850 мм, свернутых в рулоны массой до 45 т.

Прокатка полос из низколегированных марок сталей производится на пониженных режимах в пределах допускаемых проектом статических нагрузок на механизмы главных линий рабочих клетей.

.2 Характеристика готовой продукции:

Размеры горячекатаных полос

толщина, мм1,2 - 16,0;

ширина, мм750 - 1850;

внутренний диаметр рулона, мм850;

максимальный наружный диаметр рулонов, мм 2300;

масса рулонов, т.не более 45

Оборудование стана совместно с комплексными системами автоматизации, закупленными у фирмы «Дженерал-Электрик», США, должны обеспечить получение продукции, удовлетворяющей требованиям, указанным в таблице 1.1.

Таблица 1.1

Наименование параметраДопускаемое отклонениеПримечаниеТолщина полосы, мм 1,2 - 5 5,1 - 10 10,1 - 16±0,05 мм ±1% от заданного значения ±0,1 ммНа 96% длины2. Разнотолщинность полосы при ширине, мм до 1250 1251 - 1650 1651 - 1850±0,03 мм ±0,04 мм ±0,05 ммНа 96% длины3. Ширина полосы, мм 750 - 1850±6 ммНа 96% длины4. Планшетность5 мм/1 м5. Телескопичность рулона50 мм6. Серповидность полосы5 мм/3 м

1.3 Характеристика исходной заготовки

Исходным материалом для прокатки на НШС-2000 как правило, являются литые слябы, поступающие с установок непрерывной разливки стали через транспортно-отделочное отделение.

Подготовленные к прокатке слябы должны соответствовать техническим условиям на литую заготовку ТУ-14-1-3347-82.

На стане предполагается использовать горячий посад слябов в нагревательные печи с сохранением их тепла в специально созданных копильниках. Доля горячего посада составляет 80%.

Температура слябов при посаде в печи составляет в среднем около +750°С.

Размеры исходных заготовок (слябов):

толщина, мм 250;

ширина, мм 750 - 1900;

длина, мм 6000 - 12000;

масса, т, не более 45.

1.4 Производительность стана

Согласно проекта производительность стана по горячекатаным рулонам принята:

0 млн. т/г - при работе с 3 нагревательными печами;

5 млн. т/г - при работе с 4 нагревательными печами.

Годовой фонд работы оборудования принят 7000 часов.

.5 Краткая техническая характеристика основного оборудования стана

План расположения оборудования предоставлен на рисунке 1

Район нагревательных печей:

) Число печей с шагающими балками, шт. 3 (4).

) Максимальная производительность печей, т/ч 465.

) Масса садки в печи, т, не более 1400.

) Температура в печи, °С, не более 1380.

Черновая группа:

) Количество клетей, шт. 7

В том числе:

вертикальная клеть (окалиноломатель), шт. 1.

клеть дуо № 1, шт. 1.

универсальные клети кварто № 2, 3.

(отдельно стоящие), шт. 2.

универсальные клети кварто № 4, 5, 6.

(в составе непрерывной группы), шт. 3.

) Диаметры валков, мм.

вертикальной клети 1200/1100.

клети дуо № 1 1400/1300.

универсальных клетей № 2 - 6:

рабочие 1180/1080.

опорные 1600/1460.

вертикальные 1000/900.

) Максимальная скорость прокатки, м/с 2 -5.

Чистовая группа:

) Количество клетей, шт. 7 (8).

) Диаметр валков, мм:

рабочих (клетей № 7, 8) 850/810.

рабочих (клетей № 9 - 13) 800/760.

опорных 1600/1460.

) Длина валков, мм:

рабочих 2000.

опорных 1820.

Длина рабочих валков последних четырех клетей, оснащенных системой осевой сдвижки рабочих валков приведена в технической характеристике поставляемого фирмой «Дейви Макки» оборудования.

) Максимальная скорость прокатки, м/с 21 (23).

) Тип нажимного устройства комбинированное гидро-эл.механическое.

) Механизм осевого перемещения рабочих валков (на последних 4-х клетях).

) Отметка уровня прокатки, м +0,975.

) Отклонение уровня прокатки, мм ±5.

Уборочная группа:

) Количество участков охлаждения, шт. 2.

) Число моталок для полосы:

тонкой, шт. 2 (3).

толстой, шт. 3.

Рисунок 1 - План расположения оборудования непрерывного широкополосного стана

Характеристика некоторых энергоносителей:

) Электроэнергия:

напряжение постоянного тока, В 220.

напряжение переменного тока, В 380.

) Вода горячая, технологическая:

температура в подающем трубопроводе, °С 70.

давление в подающем трубопроводе, МПа 0,3.

) Вода техническая:

давление, МПа 0,3.

температура, °С от +5 до +20.

концентрация взвесей, мг/л, не более 100.

крупность частиц, мм, не более 0,3.

жёсткость, мг.экв/л 6 - 7.

концентрация масла, мг/л, не более 20.

) Воздух сжатый, осушенный:

давление у потребителя, МПа 0,4 - 0,6.

давление на вводе в цех, МПа 0,6 - 0,9.

2. Выбор структурной схемы главной линии рабочей клети

Привод рабочих валков клетей стана 2000 осуществляется электродвигателем через промежуточные передаточные механизмы и устройства, которые составляют рабочую линию клети. Передаточным механизмом в клети № 6 является привод безредукторный через главный шпиндель, шестеренную клеть и шпиндели.

При безредукторном приводе электродвигатель соединяется непосредственно с шестеренной клетью главным шпинделем (рисунок 2).

Шестеренные клети служат для передачи крутящего момента от двигателя или редуктора к шпинделям и рабочим валкам.

Рисунок 2 - Структурная схема главной линии рабочей клети: 1 - опорные валки, 2 - рабочие валки, 3 - универсальные шпиндели, 4 - механизм уравновешивания, 5 - шестеренная клеть, 6 - моторная муфта

Из условия выбора оптимальных значений угла наклона шпинделей при передаче требуемого крутящего момента в черновой группе клетей приняты три типоразмера шестеренных клетей с межцентровыми расстояниями: 1250, 900 и 800 мм.

Клеть № 6 - межцентровое расстояние 1250 мм.

Каждая шестеренная клеть состоит из литой станины открытого типа, установленной на фундаменте, крышки станины, подушек средних, размещенных в боковых проемах станин, торцевых составных (из трех частей) крышек, закрывающих боковые проемы станин снаружи.

Крышка со станиной стягиваются между собой четырьмя шпильками (с гайками) которые фиксируются в станине посредством чеки, а дополнительная фиксация на шпильках осуществляется клиньями.

В расточках станины и подушек средних с одной стороны, подушек и крышки с другой стороны на стальных вкладышах с баббитовой заливкой установлены соответственно нижний приводной и верхний шестеренные валки с шевронными зубьями. Шестеренные валки выполнены кованными из легированной стали. Валки шестеренных клетей 1400, 1250 и 900 имеют лопасти для муфт универсальных шпинделей, а валки шестеренной клети 800 - выходные концов с посадными лопастями для муфт зубчатых шпинделей.

В станине и крышке станины имеются люки для контроля состояния зубчатых зацеплений и установки термосигнализаторов контроля температуры вкладышей. Кроме того, на крышке установлена отдушина и предусмотрены отверстия для установки коллектора подвода смазки к зацеплению. Отвод масла осуществляется через сливное отверстие в нижней части станины клети. Предусмотрены также желоба для отвода утечек масла.

На торце верхнего шестеренного вала шестеренных клетей чистовой группы (со стороны двигателя) предусмотрена установка сельсина, включенного в систему контроля оборотов рабочих валков прокатных клетей.

Главный шпиндель представляет собой типовые зубчатые муфты с промежуточным валом. При этом, зубчатые втулки, насаженные на концах промежуточного вала, находятся в зацеплении с зубчатыми втулками двигателя и шестеренной клети через соответствующие зубчатые обоймы. Промежуточный вал установлен на подшипниках качения в расточках разъемных корпусов двух подшипниковых опор, которые закреплены к фундаменту. В средней части промежуточного вала и на выступающих втулках подшипниковых опор предусмотрены посадочные места для установки соответственно храповика и полуколец устройства для доворота шпинделей. Все муфты закрыты кожухами.

В станине на вкладышах с баббитовой заливкой установлены шестеренные валки с шевронными зубьями, при этом нижний шестеренный валок смонтирован с осевым зазором 1 … 1,5 мм, а верхний - самоустанавливается по нижнему. Шестеренные валки с лопастями для муфт шпинделей - кованные из стали 4СХНМА.

3. Разработка конструкции рабочей клети

.1 Прокатные валки

Валки прокатных станов выполняют основную операцию прокатки - пластическую деформацию (обжатие) металла. В процессе деформации металла, вращающиеся валки воспринимают давление, возникающее при обжатии металла, и передают это давление на подшипники.

Валок состоит из нескольких элементов: бочки, которая при прокатке непосредственно соприкасается с прокатываемым металлом; шеек, расположенных с обеих сторон бочки и опирающихся на подшипники; концевых частей.

Основные размеры валков - их диаметры и длину бочки выбирают на основании практических данных (в зависимости от типа и назначения прокатного стана) и уточняют соответствующим теоретическим анализом с учетом прочности валков на изгиб и допустимого прогиба при прокатке.

Валки с подушками представляют собой узел, состоящий из двух рабочих и двух опорных валков с подушками.

Рабочие валки чугунные, а опорные - кованные из легированной стали. Поверхности их шеек и бочек имеют высокую твердость. Приводные концы рабочих валков выполнены цилиндрической формы с двумя лысками (под шпиндельную муфту).

Рабочие валки монтируются в подушках на четырехрядных конических роликоподшипниках. Гарантированный свал или смещение оси рабочего валка в подушке относительно оси опорного валка (в сторону выхода из клети) составляет 10 мм.

Подушки рабочих валков выполнены литыми из стали. Нижние рабочие подушки имеют два рогообразных прилива. Боковые поверхности этих подушек и внутренние поверхности приливов облицованы направляющими, закаленными стальными планками. Нижняя рабочая подушка со стороны перевалки имеет короткие выступы, за которые осуществляется осевая фиксация комплекта рабочих валков, относительно станины клети. В расточках нижних рабочих подушек смонтированы гидравлические плунжерные цилиндры уравновешивания верхнего рабочего валка. Нижние рабочие подушки установлены с гарантированным зазором в вертикальных направляющих проемов станин, а верхние рабочие подушки установлены в направляющих приливов нижних подушек. Боковые поверхности верхних рабочих подушек также облицованы направляющими закаленными стальными планками. В осевом направлении верхняя рабочая подушка со стороны перевалки центрируется в нижней за счет того, что боковые выступы верхней подушки установлены с зазором в 1 мм в соответствующих пазах нижней подушки.

Подушки опорных валков выполнены литыми из стали, их боковые поверхности облицованы стальными закаленными планками. Подушки опорных валков установлены с гарантированным зазором в вертикальных направляющих проектов станин. Опорные подушки со стороны перевалки имеют пазы для осевой фиксации комплекта опорных валков.

Опорные валки монтируются в подушках на подшипниках жидкостного трения (ПЖТ). Верхние подушки опорных валков имеют захваты для соединения с механизмом уравновешивания верхнего опорного валка, нижние опорные подушки имеют выступы, сопрягаемые с выступами на салазках перевалки комплектов опорных валков. Концы опорных валков с упорными подшипниковыми узлами ПЖТ защищены в подушках кожухами, входящими в комплект поставки ПЖТ. Нижние опорные подушки через опорные планки с цилиндрической поверхностью для самоустановки опираются на датчики давления (месдозы), установленные на салазках. Установка нижнего рабочего валка на уровень прокатки осуществляется за счет размещения прокладок между опорными планками опорных подушек и месдозой с фиксацией их на месдозе.

На боковых поверхностях всех подушек рабочих и опорных валков имеются отверстия для их кантовки на соответствующих стендах и кантователях при сборке-разборке подшипниковых узлов. Фиксация подушек в станине от осевого смещения осуществляется гидроприводными защелками.

Для механизации перевалки рабочих валков в подушках нижнего рабочего валка расположены ходовые катки, а в каждой из подушек нижнего опорного валка попарно установлены четыре гидравлических цилиндра, крайние (относительно оси прокатки) плунжеры которых соединены с направляющими балками, по которым перемещается комплект рабочих валков при их смене, а ближние плунжеры упираются в эти балки, создавая дополнительное усилие подъема. Ход балок вверх ограничен упорами на станине. Для захвата комплекта рабочих валков при перевалке на нижних подушках рабочих валков установлены для крюка.

Выбор материала, конструкции и размера валка

Валки работают в условиях непрерывного истирания их металлом при прокатке, испытывая большие напряжения при динамических нагрузках и иногда при высокой и резко изменяющейся температуре. Поэтому к качеству валков предъявляются очень высокие требования, так как оно определяет нормальную работу стана, его производительность и качество готового проката.

Для толстолистовых станов горячей прокатки применяют валки из отбеленного чугуна и из стали марок 50Х и 50ХН.

Для четырехвалковых клетей станов горячей прокатки применяют кованые валки с высокой поверхностной твердостью (рабочие валки - до 100 единиц по Шору, опорные валки 70 - 80 единиц по Шору) и высокой прочностью (до 800 - 900 Мпа), валки диаметром до 300 мм изготавливают из легированной хромистой и хромованадиевой стали 9Х и 9ХФ, а диаметром более 300 мм - из стали с повышенным содержанием хрома (9Х2), хромомолибденовой (9Х2МФ, 65ХНМ, 75ХМ) и хромовольфрамовой (9Х2В).

Валки подвергают термической обработке (закалка, отпуск) по специальным режимам (в зависимости от марки стали и размеров валков).

Большие опорные валки целесообразно изготовлять составными бандажированными. Материал оси - сталь марок 55Х, 60ХР, 45ХНМ, хорошо сопротивляющейся изгибу; материал бандажа - сталь марок 9Х2.

Стан 2000 горячей прокатки. Клеть №6 - на рабочих валках применяется чугун, на опорных валках применяется сталь: 9ХФ, 75ХМ, 75ХМФ.

Основные размеры валков - их диаметр и длину бочки выбирают на основании практических данных (в зависимости от типа и назначения прокатного стана) и уточняют соответствующим теоретическим анализом с учетом прочности валков на изгиб и допустимого прогиба при прокатке.

Определение сил, действующих на валок при прокатке

При прокатке давление металла с рабочих валков передается на опорные и воспринимается их подшипниками (рисунок 3). Благодаря большей жесткости опорных валков прогиб их будет незначительным и профиль полосы будет иметь прямоугольное сечение.

Величина абсолютного обжатия ограничивается максимальным углом захвата и определяется:

∆hmax = 0.9 * Kп * f 2 * Rp, где

п - коэффициент переточки валков;- коэффициент трения;- радиус бочки валка.

Для листовых станов горячей прокатки

0.9 * Kп * f 2 = 0,09

Определим диаметр рабочего валка:= 1180 мм= 1080 мм, длина бочки валка 2000

Диаметр опорного валкаоп = 1600 ммОПn = 1460 мм, длина бочки 1820 мм.

Рисунок 3 - Силовое действие полосы на валок

Сила реакции опоры

Р - сила, с которой полоса действует на валок (усилие прокатки)

М - крутящий момент

Для правильной эксплуатации стана и во избежание поломки валков, станины, шпинделей и других деталей необходимо в процессе прокатки измерять полное давление металла на валки P (усилие при прокатке).

Определим усилие, действующее на валки при горячей прокатке полосы (рисунок 4) в чистовой клети № 6 стана 2000 со скоростью прокатки 3,5 м/с.

Рисунок 4 - Схема к расчету прочности валков четырехвалковой клети

стан рабочий клетка линия

Толщина раската до клети № 6 - h0 = 42 мм;

Толщина раската после клети № 6 - h1=28 мм;

Абсолютное обжатие: Dh=h0-h1=42-28=14 мм.

Относительное обжатие,: e=100*Dh/h0=100*14/42=33,3 %.

Длина дуги захвата: °/мм.

Коэффициент контактного трения: m=0,06.

Коэффициент, характеризующий наличие зон скольжения:

Yп=1/(2×m)×ln(1/(2×m)) = 1/(2×0,06)×ln(1/(2×0,06)) = 17,67.

Угол захвата:

a=Dh/lд=14/90,88 =0,15

Проверяем наличие зоны прилипания на дуге захвата:

д/hcp=90,88/((42+28)/2)=90,88/35=2,59

59 < 35,34

Следовательно, по всей длине очага деформации имеется только зона скольжения

Определим среднее давление металла на валки и полное усилие прокатки:

При двухмерной деформации, когда уширением можно пренебречь, коэффициент Лоде nγ=1,15.

nσ = nв* nσ* nσ * nσ

При прокатке широких полос среднее нормальное контактное напряжение не зависит от ширины полосы и коэффициент, учитывающий влияние ширины полосы, nв = 1.

Коэффициент, учитывающий влияние внешнего трения на значение среднего нормального контактного напряжения, можно определить по формуле:

nσ = 1+ lд/(6* hcp) = 1 + 90,88/(6*35) = 1,43

Так как (lд/hcp) = 2,59 > 1 с удовлетворительной точностью коэффициент, учитывающий влияние внешних зон деформации nσ можно принять равным единице. Так как прокатка осуществляется без натяжений, то коэффициент, учитывающий влияние натяжений nσ = 1.

Тогда коэффициент напряженного состояния

nσ = nв* nσ* nσ * nσ = 1 * 1,43 * 1 * 1 = 1,43

Для определения фактического сопротивления деформации используем метод термомеханических коэффициентов, разработанный В.И.Зюзиным.

σф = σ0 * Кt * Кε * КU

Для Ст.3 базисное значение сопротивления деформации σ0 = 86 МПа.

При температуре прокатки 1120 ºС температурный коэффициент Кt = 0,65 .

Для относительного обжатия ε=33,3% степенной коэффициент Кε = 1,3

Для назначения скоростного коэффициента КU определим среднюю скорость деформации

Uср = (v/ lд)*(Δh/ h0) = (3,5/0,09)*(0,014/0,042) = 12,96 с-1

По графику на рисунке II.15 находим КU = 1,2. Тогда фактическое сопротивление деформации:

σф = σ0 * Кt * Кε * КU = 86*0,65*1,3*1,2 = 87.2 МПа

Среднее нормальное контактное напряжение:

1,15*1,43*87,2 = 143,4 МПа

Так как прокатка плоская, то уширением можно пренебречь, площадь контакта полосы с валком :

B * lд = 1,85 * 0,09 = 0,16 м2

Усилие прокатки находим по формуле:

Р = рср * F = 143,4 *106 * 0,16 = 22,08*106 Н = 22,08 МН

Усилия между рабочими и опорными валками распределяются следующим образом:

Таким образом, рабочие валки воспринимают только 5,11/22,08*100=23,14 % от общего давления на валки при прокатке.

Расчет прочности валков

Расчет валков на прочность сводится к определению максимальных напряжений в бочке, шейках и приводном конце валке, сравнение этих напряжений с допускаемыми .

Определяем крутящий момент, необходимый для привода одного валка. Для этого необходимо знать момент прокатки и момент трения в подшипниковых опорах валка.

Момент прокатки

Мпр = 2Рψlд = 2 * 22,08 *106 * 0,5* 0,09 = 1,98 * 106 Нм = 1,98 МНм

Где ψ = 0,5 - коэффициент плеча равнодействующей [ 4 с.65] при горячей прокатке простых профилей.

Момент трения в подшипниковых опорах валка

Мтр = Рfd/2 = 22,08*106*0,006*0,54/2 = 36 * 103 Нм

где f = 0,006 - коэффициент трения роликовых конических подшипников

Тогда крутящий момент, приложенный к приводному концу валка, определяем по формуле:

Мкр = (Мпр/2) + Мтр = (2800*103/2)+36*103 = 1,43 *106 = 1,43 МНм

Максимальный крутящий момент на один валок 3,4 МНм.

Изгибающий момент бочки валка определяется:

где - а - расстояние между серединами шеек валка, м.

Изгибающий момент шейки:

Момент сопротивление бочки валка при изгибе:

Напряжения, возникающие в бочке валка:

σизг.б. = 16,2 < [σ] = 120 МПа, следовательно, бочка валка выдержит нагрузку.

Момент сопротивления шейки валка при изгибе:

Напряжение от изгибающего момента, возникающего в шейке:

Касательные напряжения в шейке валка от крутящего момента:

Для стальных валков:

σэкв = 93,77 < [σ] = 120 МПа

Значит шейка выдержит прикладываемую нагрузку.

В качестве заготовок используется полоса толщиной 42 мм, b = 1850 мм.

Величина относительной деформации составит:

Длина очага деформации:

В четырехвалковых клетях условие «естественного» захвата металла валками не является лимитирующим, так как практически при прокатке угол захвата всегда значительно меньше коэффициента трения и зависит от упругого контактного сплющивания рабочих валков:

где (Кср - σ ср) = 500 Мпа,

Мпа - для стальных валков

Максимальное контактное напряжение σк в середине линии контакта двух валков, нагруженных силой Р=q·r

мм - величина сплющивания валков.

Определим напряжение в опорном валке Моп = Р/4*(а-b/2)

σ = Миз/(0,1*d3) = 8.59/(0,1*1,63) = 20,97 МПа - посредине бочки валка.

Напряжения, возникающие в бочке и шейках меньше допустимого.

σоп = 20.97 < [σ] = 120 МПа, следовательно выдержат прикладываемые нагрузки.

Расчет упругой деформации валков и определения жесткости валковой системы.

Наибольший прогиб валков происходит под давлением изгибающих моментов. Так как диаметр валков по сравнению с длиной бочки относительно велик то необходимо учитывать прогиб, возникающий под действием перерезывающих сил, вызывающих неравномерные касательные напряжения в поперечных сечениях и относительный сдвиг их .

Таким образом, суммарный прогиб валка в любом сечении на расстоянии Х от опоры будет:

F 1 + f2 , где;

1 - прогиб в результате действия изгибающих моментов.2 - прогиб вследствие действия поперечных сил.

Е - модуль упругости = 2,15×105 МПа;

f1 = 22,08×106 / (18,8×2,15×105 ×1,184)* = 0,0000442 м = 0,0442 мм,

Прогиб валка от действия поперечных сил f2 = P / A×D²×G , где

G = 0.82× 105 МПа=22,08/3,05×1,182×0,82×105 = 0,000079 м = 0,079мм

суммарный прогиб валка составит: f = 0,079+0,0442 = 0,123 мм. Упругой деформацией рабочих валков с полосой можно пренебречь.

Суммарный прогиб валковой системы будет равен сумме прогибов двух валков ∑f = 2f = 2*0,123 = 0,246.

Тогда жесткость валковой системы определится

Св = Р /∑f = 22,08×106 / 0,246 = 89756 КН /мм = 8,97 МН/мм.

3.2 Тип, конструкция и основные параметры подшипников прокатных валков

Подшипники опор валков прокатных станов передают усилия, возникающие при деформации металла, от валков на станину и другие узлы рабочей клети и удерживают валки в заданном положении .

Особенностью работы этих подшипников является высокая удельная нагрузка (в несколько раз превышающая нагрузку подшипников общего назначения), которая обусловлена сравнительно малыми габаритами шейки валка и большими усилиями прокатки. К выбору материала подшипников прокатных валков и их конструкции предъявляют особые требования. В настоящее время для прокатных валков практически применяют подшипники трех типов: подшипники скольжения с неметаллическими вкладышами; подшипники жидкостного трения (ПЖТ); подшипники качения .

Подшипники качения широко применяют для валков четырех валковых клетей станов горячей прокатки. Для валков этих станов применяют роликовые подшипники с коническими роликами (двухрядные, четырехрядные), так как они хорошо самоустанавливаются и способны воспринимать большие осевые нагрузки.

Подшипники качения для рабочих валков выбирают из условия их долговечности (например 10 тыс. часов непрерывной работы) принимая при этом, что на подшипник действует осевое усилие от валка, которое не превышает 2% от радиального усилия на валки Р при прокатке полосы (Q ≤ 0,02Р).

Подшипник выбираем по диаметру бочки валка, исходя из конструктивных размеров валка.

Расчет подшипника скольжения.

Усилие прокатки Р=22.08 кН, диаметр шейки валка 920 мм, длина шейки 515 мм.

При прокатки наибольшее давление испытывают верхний и нижний вкладыши, поэтому их выбираем с углом обхвата.

Для заданного диаметра шейки выбираем вкладыши с номинальными значениями, длиной. Ширину вкладыша определяем по формуле:

Определяем удельное давление на вкладыш:

Таким образом, работоспособность подшипника обеспечена.

Подшипники фирмы SKF (Англия) обладают большим моторресурсом и стойкостью. Смазка подшипников осуществляется от автоматической централизованной системы густой смазки.

Преимущество густых смазок в том, что они не требуют сложных уплотнений и сами являются уплотнениями, защищая трущиеся поверхности от попадания пыли. Используют специальную густую смазку ИП - 1, периодически подаваемую автоматическими централизованными станциями.

С целью повышения нагрузочной способности и улучшения отвода тепла в подшипники качения необходимо подавать жидкую смазку (марки П - 28). Весьма рациональной является смазка масляным туманом: подача распыленного воздухом масла в этом случае осуществляется специальными насадками, смонтированными в корпусе подшипника.

В качестве подшипников опорных валков, в четырехвалковых клетях применяют подшипники жидкостного трения ПЖТ, которые имеют ряд преимуществ:

Надежность в условиях тяжести работы прокатных станов.

Меньше габариты, чем у подшипников качения и способность выдерживать большие нагрузки.

Простота смены подшипников.

Большая долговечность.

Диаметры шеек опорных валков определяют типоразмерами подшипника, который как правило выбирают максимального размера для данного диаметра бочки опорного валка с учетом необходимой величины переточки валка.

3.3 Механизмы для установки и уравновешивания валков

Чтобы процесс прокатки протекал нормально валки должны занимать в рабочей клети определенное положение. Для этого в каждой рабочей клети предусмотрены механизмы и устройства для вертикальной установки валков (нажимные механизмы), осевой установка валков и уравновешивания верхнего валка .

Механизм нажимной электромеханического типа предназначен для установки валков на заданный межвалковый раствор в паузах между прокаткой. Установленная мощность привода, прочностные и кинематические особенности конструкции нажимного механизма позволяют также выполнять коррекцию толщины металла при прокатке. Однако в связи с оснащением всех чистовых клетей гидронажимными устройствами (ГНУ) фирмы «Дейви Макки), последние подключены в систему автоматического регулирования толщины (САРТ) и участвуют в корректировке обжатия в процессе прокатки с целью получения заданной толщины полосы, требуемой продольной и поперечной разнотолщинности, а электромеханический нажимной механизм используется в этом случае для грубой настройки раствора валков. При аварийных отказах ГНУ регулировка толщины полосы в процессе прокатки будет осуществляться нажимными механизмами.

Механизм уравновешивания верхнего опорного валка гидравлического типа предназначен для выбора зазоров между подшипниковыми опорами подушек верхних опорных валков и нажимными винтами между нажимными винтами и гайками, а также для перемещения верхнего опорного валка с подушками при установке раствора между валками при установки в положение перевалки.

Уравновешивание верхнего опорного валка осуществляется гидравлическим цилиндром установленным в расточке верхней траверсы узла станин. Плунжер гидроцилиндра соединен осью с верхним коромыслом, которое в свою очередь посредством тяг связано с двумя боковыми коромыслами, плечи которых заходят в окно станин и соединяются с «Г» - образными приливами верхних подушек.

Выбор типа и конструкции.

Конструктивно механизм уравновешивания представлен на прилагаемом чертеже (рис. 6). Масса уравновешиваемых деталей 92000 кг. Масса подвижных деталей механизма 14000 кг. Рабочее время в гидроцилиндре 10 МПа. Коэффициент переуравновешивания 1,42. диаметр плунжера гидроцилиндра 450 мм. Скорость перемещения нажимного винта 1,03 мм/сек. Тип резьбы винта Уп S 600 х 24 мм.

Рисунок 6 - Механизм уравновешивания верхнего опорного валка

Наибольшее перемещение нажимных винтов вверх при новых валках 150 мм.

Электродвигатель привода нажимного механизма П2 - 450 - 135 - ТУ4, мощность 400 КВт, частотой вращения 500 об/ мин. Общее передаточное число от электродвигателя к нажимному винту 195,3. Диаметр нажимной гайки и ее высота определяется исходя из рекомендаций:

Д = (1,5…..1,8)d0

Н = (0,95….1,10)D,

где d0 - наружный диаметр винта, мм.

Диаметр и высота гайки при d 0 = 600 составляет

D = 1,66×600 = 1000мм.

Н = 0,95×1000 =950мм.

Расчет нажимного механизма.

Момент необходимый для того, чтобы привести во вращение нажимной винт:

µ - коэффициент трения в пяте = 0,1- диаметр пяты = 510ммcp - средний диаметр нажимного винта = 575 мм= 600×24 - наружный диаметр

α - угол подъема резьбы винта

α = arctq 12/600 = 1º09´ при шаге 24 мм

φ - угол трения = 5º40´

Мв=22,08/2* = 11040*(0.017+0.2875*0.11925) = 566,18 кНм.

Приведенный диаметр хвостовика составляет 615 мм, тогда момент сопротивления

W = πd³/16 = (3.14×0.615³)/ 16 = 0.0457 м³.

τ = Мв /W = 566,18×10³ / 0.0457 = 12,38×106 Па.

[τ] = 0,5[σ] = 0,5×120 = 60, следовательно хвостовик выдержит прикладываемый к нему крутящий момент.

Нормальные напряжения, действующие на выступающую из гайки часть нажимного винта

σ = Q/Fв, где= P/2 + (n - 1)*T - усилие действующее на нажимной винт= 1,36

Т = 86,4= 22,08*106 / 2 + (1.36 - 1)* 86,4*104 = 11,04×106 + 0,36 × 86,4×104= 11,35×106 Н.в = πdв²/4 = 3,14*0,51² / 4 = 0,204 м²

σ = 11,35*106 / 0,204 = 55,65*106 Па.

Момент трения в пяте:

МП = Q*µп * dп /3 =11,35*106 *0,1*0,51/3 = 189,17 * 10³ Нм= πd³ /16 = 3,14*0.51³ /16 = 0,026 м³.

Касательные напряжения, действующие на выступающую из гайки часть нажимного винта

τ = 189,17*10³ / 0,026 = 7,28*106 Па.

Тогда эквивалентные напряжения составят:

σ экв = 57,52 < [σ] = 140 МПа, следовательно часть винта, выступающая из гайки, выдержит прилагаемые к ней нагрузки.

3.4 Станина

Выбор типа и размера станины.

Станины являются базовым узлом клети и состоят из двух литых станин закрытого типа, связанных между собой посредством одной верхней и двух нижних траверз.

Станины опираются через плитовины на фундамент. На нижних поперечинах станин и на двух траверзах, связывающих поперечины, установлены стальные закаленные планки, расположенные в одной плоскости, которые служат в качестве опор и направляющих под салазки. Проемы (окна) станин облицованы направляющими стальными закаленными планками. Для обеспечения свободного захода подушек при перевалке ширина проема станин со стороны перевалки, как и ширина устанавливаемых в них опорных и нижних рабочих подушек, на 10 мм больше чем со стороны привода. В расточках верхних поперечин станин установлены гайки нажимного механизма. На стойках станин со стороны перевалки установлены четыре гидроприводные защелки для фиксации подушек рабочих валков. На верхней части станин смонтированы опорные кронштейны под балки привода нажимного механизма.

В проемах станины между направляющими планками установлены четыре упора, ограничивающих ход вверх направляющих балок нижних рабочих валков. На стойках выполнены также опорные места для установки балок межклетьевого промежутка.

Расчет прочности станины.

Условие прочности σ [σ], где σ - расчетное значение напряжения, в опасном сечении основного контура станины.

[σ] = σв /к - допускаемое значение напряжения, определяемое материалом станины.

σ - временное сопротивление разрыву.

к - коэффициент запаса статической прочности.

Материал станины стальное литье - 30 Л - I,

Сc - коэффициент жесткости станины.

[σ] = 50 - 60 МПа.

Сc = Y/δ МН/мм где,- усилие, действующие на станину.

δ - перемещение вызванное упругой деформацией станины.

Для листовых станов горячей прокатки:

Сc = 10-15 МН/мм.

Максимальное вертикальное усилие, действующее на станину со стороны шейки валка и передающееся на нее через нажимной винт Y = Р /2 .

Горизонтальные усилия не учитывают, ввиду их незначительности.

δ = Y /Сc мм.

Суммарное перемещение станины по вертикали в направлении действия сил Y не должна превышать 0,6-1,0 мм для станов горячей прокатки при Y = 5-15 МН.

Сс = tg α = ∆Y/∆S ,

так как tg α = const, то следует, что жесткость станины не зависит от значения усилия Y и определяется только конструктивно.

Усилие прокатки Р = 22,08 МН (рассчитано в п. 3.1.2).

Площадь сечения верхней поперечины:

Н1*В1-(d2*h2+h1*d1) = 1,45*1,8-(0,6*0,5 + 0,95*1,0) = 2,61 - 1,25 = 1,36 м².

Статистический момент площади сечения относительно оси Х:

х = В1*Н12/2 - d2*h2*(h1+(h2/2)) - (d1*h12)/2 = 1,8× 1,452/2 - 0,6*0,5*(0,95+(0,5/2))-(1,0*0,95²)/2 = 1,892- 0,36 - 0,45 = 1,082 м³.

Координаты центра тяжести площади сечения по оси У:

Ус = Sк / F1 = 1,082 м³ / 1,36 м² = 0,79 м.

Рисунок 7 - Основные размеры станины четырехвалковой клети стана 2000

Положение нейтральной оси:

у1 = ус = 0,79 м; у2 =Н1 - ус = 1,45 - 0,79 = 0,66 м

Момент инерции площади сечения верхней поперечины относительно центральной оси, проходящей через центр тяжести сечения:

Хс = J1 = (В1*Н13)/12 - [(d2*h2³)/12 + d2*h2*(h1+h2/2 - ус)²] - [(d1*h1³)/12+d1*h1*(ус -h1/2)²]= =1,8*1,45³/12--= 0,4573 - - = 0,4573 - 0,056 - 0,164 = 0,237 м4.

Площадь поперечного сечения стойки:

В2 * Н2 = 0,8×0,8 = 0,64 м².

Момент инерции площади поперечного сечения стойки:

В2 * Н2³/12 = 0,8 * 0,8³/12 = 4,4096 /12 = 0,034 м4 .

Площадь поперечного сечения нижней поперечины:

Н3 * В3 = 1,44* 0,8 = 1,15 м².

Момент инерции площади поперечного сечения нижней поперечины:

В3 * Н3³/12 = 0,8×1,44³/12 = 0,199 м4.

Размеры основного контура станины будут следующими:

B + Н2 = 1800 +800 = 2600 мм= h +уc + (Н3/2) = 7360 + 790 +1440/2 = 8870 мм. (смотри рис 7)

Усилие действующее на станину:

У = Р / 2 = 22,08 /2 = 11,04 МН

Е = 2*105 МПа= 0,75 * 105 МПа

Проверочный расчет станины.

) проверяем прочности станины в сечение I-I верхней поперечины. Моменты сопротивления поперечного сечения изгибу:

JХс/у1 = 0,237/ 0,79 = 0,3 м³

W2 = JХс /у2 = 0,237 /0,66 =0,359м³.

Изгибающий момент в середине верхней поперечины определяется по формуле:

Наибольшее напряжение сжатия по внутреннему контуру станины:

σ1 =Мп /W1 = 7*106/0,3 = 23,3*106 Па

σ1 ≈ 23 МПа < [σ] = 60 мПа, таким образом условие прочности выполняется.

) Проверяется прочность стойки в сечении II-II:

В2 * Н2 ²/6= 0,8*0,8² / 6 = 0,0853 м³.

Изгибающий момент в стойке:

Наибольшее напряжение в стойке по внутреннему контуру определяется по формуле:

σ1 = Y/2F2 + Мст /W ≤ [σ]

σ1 = 11,04*106/2*0,64 + 0,157*106 /0,0853 = 8,63*106+1,84*106 = 10,46*106 Па

σ1 = 10,46 МПа < [σ] = 60 МПа - условие прочности стойки выполняется.

) проверяется прочность нижней поперечины в сечении III-III

Момент сопротивления поперечного сечения изгибу:

В3*Н3² /6 = 0,8 * 1,44² /6 = 0,27 м³.

Напряжение растяжения (сжатия) определяется по формуле:

σ = Мп/W = 7 * 106/0,27 = 25,93 * 106 Па

σ = 26 МПа < [σ] = 60 МПа - условие прочности нижней поперечины выполняется.

Проверочный расчет жесткости станины.

Так как J1/J3 ≠ 1 , то перемещение станин в направление усилия Y определяется:

δ 1 = 1 / 2Е [ Мст × (l2 l1 / J2 + (l12 (J1 + J3)/12J1J3) * 2(Мст - Мп))]

δ1 = 1/(2*2*105)* = 25*10-5* = 25*10-5*(117,19*106-37,63*106) = 0,2мм.

Перемещение станины от действия поперечных сил вследствие деформации двух поперечин:

Перемещение станины от действия продольных сил действия вследствие деформации двух стоек:

Полное перемещение станины:

δ = δ1 + δ2 + δ3 = 0,2 +0,18+ 0,38 = 0,76 мм.

Жесткость станины С = У / δ = 11,04*106 /0,76 = 14,53 МН/мм.

Такая жесткость для листовых станов горячей прокатки считается удовлетворительной

3.5 Расчет коэффициента жесткости рабочей клети

Под жесткостью понимают величину усилия прокатки приходящуюся на единицу деформации клети. Жесткость рабочей клети определяется по формуле:

/Скл = 1 /Св +1 /Сст +1 / Спв +1/Спод + 1/Сну + 1 /Сдр эл где:

Скл - жесткость клети,

Св - жесткость валковой системы,

Спв - жесткость подшипников валков,

Спод - жесткость подушек,

Сну - жесткость нажимного устройства,

С др эл - жесткость других элементов клети.

Так как наибольшее влияние на жесткость клети оказывают жесткость валковой системы и жесткость станин, то жесткость клети можно представить:

3.6 Крепление клети к фундаменту

При бетонирование фундамента для клети №6 заложена анкерная арматура - литые анкерные плиты 100×500, в которые ввинчиваются фундаментные болты. Фундаментные болты состоят из шпильки, гайки, шайбы. Шпильки закладываются и вкручиваются в анкерную плиту после изготовления фундамента.

Диаметр болтов, связывающих станину с плитовиной, делается:

d » 0,1D + 5 ÷ 10 мм;» 0,1×1460 + 5 » 151 мм.

Высота плитовины делается приблизительно:

3.7 Тип и конструкции валковой арматуры

Проводковая арматура предназначена для удерживания полосы по оси прокатки при ее задаче в валки и непосредственно в процесс прокатки.

С передней и задней стороны клетей устанавливают проводки для центрирования полосы относительно оси прокатки, а также предотвращения оковывания валков. Для облегчения входа полосы в валки с передней стороны клетей помещают направляющие линейки. Управление линейками и настройка проводок должны быть максимально облегчены и механизированы, что обеспечит минимальную потерю времени при перестройке стана и смене валков.

Рисунок 8 - Общий вид проводок между клетями черновой группы

На рисунке 8 показан общий вид линеек и проводок между клетями. Литые линейки 1 размещены перед клетью на направляющих брусьях 2. По этим брусьям линейки винтами, перемещаются перпендикулярно оси прокатки. С задней стороны клети установлены стопы 4, к которым укрепляют нижние проводки 5. Верхние проводки 6 подвешивают на контргрузах к проводковому брусу 7. При перевалке рабочих валков направляющие линейки и задний стол должны быть отведены от клетей. Для перемещения заднего стола предыдущей клети и направляющих линеек последующей клети установлен электродвигатель, поворачивающий через редуктор вал 8, на котором сидит рычаг 9, связанный с тягами 10. При повороте вала 8 направляющие линейки и стол перемещаются по брусьям 11, отходят от клети. Верхние проводки для более удобной эксплуатации лучше укреплять к рычагам, а не подвешивать на цепях, как на некоторых станах. Конструкция верхних проводок и их соприкосновение с рабочим валком должны обеспечивать отвод охлаждающей воды без попадания на поверхность прокатываемых полос. Полоса, выходящая из предыдущей клети направляется в валки последующей клети, при этом электромагнитные регуляторы автоматически включают электродвигатель, поворачивающий вал и рычаг с холостым роликом 12 на конце, последний будет стремиться занять верхнее положение, благодаря чему за весь период прокатки полоса будет находиться под некоторым (небольшим) натяжением. С целью недопущения образования большой петли полосы на одном конце вала установлен сельсин-регулятор, который при увеличении угла поворота рычага с роликом 12 дает импульс (команду) на уменьшение (увеличение) частоты вращения главного электродвигателя привода валков предыдущей (последующей) клети.

4. Тип и конструкция передаточных механизмов главной линии рабочей клети

Передаточным механизмом в клети № 6 является привод безредукторный через главный шпиндель, шестеренную клеть и шпиндели.

При безредукторном приводе электродвигатель соединяется непосредственно с шестеренной клетью главным шпинделем.

Шестеренные клети служат для передачи крутящего момента от двигателя к шпинделям и рабочим валкам.

Каждая шестеренная клеть состоит из литой станины открытого типа, установленной на фундаменте крышки станины, подушек средних, размещенных в боковых проемах станины и торцевых составляющих (из трех частей) крышек, закрывающих боковые проемы станин снаружи.

Главный шпиндель представляет собой типовые зубчатые муфты с промежуточным валом. При этом зубчатые втулки, насаженные в зацепление с зубчатыми втулками двигателя и шестеренной клети через соответствующие зубчатые обоймы. Промежуточный вал установлен на подшипниках качения в расточках разъемных корпусов двух подшипниковых опор, которые закреплены к фундаменту в средней части промежуточного вала и на близлежащих опор предусмотрены посадочные места для установки соответственно храповика и полуколец устройства для доворота шпинделей. Все муфты закрыты кожухами.

В станине на вкладышах с баббитовой заливкой установлены шестеренные валки с шевронными зубьями, при этом нижний шестеренный валок смонтирован с осевым зазором 1…..1,5мм, а верхний самоустанавливается по нижнему. Шестеренные валки с полостями для муфт, шпинделей - кованные из стали 40ХНМА.

В станине и крышке станины имеются люки для контроля состояния зубчатых зацеплений и установки термосигнализаторов контроля температуры вкладышей. В крышке имеются отверстия для установки коллектора подводки смазки к зацеплению. Отвод масла осуществляется через отверстие внизу корпуса клети.

Передача крутящего момента от шестеренной клети непосредственно к рабочим валкам клети осуществляется универсальным шпиндельным устройством. Шпиндельное устройство 6 клети как и система осевой сдвижки поставляются фирмой «Дейви Макки».

5. Выбор типа и определение мощности главного двигателя

Крутящий момент, создаваемый двигателем при вращении валков, определяют по формуле:

Мдв = Мпр / i+ Мтр + Мхх + Мдин где:

Мтр - момент добавочных сил трения, приведенный в виду двигателя:

Мхх - момент холостого хода:

Мдин - динамический момент на виду двигателя:- передаточное число между двигателем и валками (iш.к.= 1; безредукторный привод).

При прокатке металла на четырех валковом стане давление металла на рабочий валок передается на неприводные опорные валки, поэтому потери на трение возникают только в подшипниках опорных валков.

Мтр = Рdn * f / i + (1 / ηпер - 1) * ((Мпр + Рdn *f) / i); где

ηпер = ηшпинд * ηш.к. * ηмуфт - общий КПД передаточных механизмов

η = 0,97* 0,9³ * 0,97 = 0,88

момент трения составит:

Мтр = (22,08*106 *1,18 * 0,006/1 + (1/0,88 - 1) * ((1.98*106 + 22.08*106 * 1,18*0,006)/1 = 180174,67 Нм = 180,17 КНм

Момент холостого хода определяем по формуле:

Мхх = ∑((Gn*fn*dn)/2in), где:

Gn - вес детали, fn, dn - коэффициент трения и диаметр цапф вращающейся детали, in - передаточное отношение от двигателя до данной детали. Принимаем момент холостого хода равным 5% от приведенного к валу двигателя моменту прокатки:

Мхх = 0,05* Мпр /i = 0,05* (1,98*106)/1 = 0,099*106 МН.

Крутящий момент двигателя:

Мдв = 1,98*106/1 + 180174 + 99000 = 2259174 Нм.

Угловая скорость вращения вала определяется по формуле:

ωдв = 2π*п / 60, где:

п - скорость вращения двигателя п = 50 об/мин

ωдв = 2*3,14 * 50 / 60 = 4,4 с-1 .

Тогда необходимая мощность для вращения валков:

дв = Мдв * ωдв. N дв = 2259174 * 4,4 = 9,94*106 Вт.

Принимаем к установке двигатель мощностью 12МВт типа 2МП14200 - 50 УЗ.

6. Тип и конструкция устройств для перевалки валков

Механизм смены валков предназначен для одновременной замены рабочих валков на всех или нескольких клетях чистовой группы, а также для вывалки и завалки опорных валков.

Механизм смены валков установлен со стороны обслуживания чистовых клетей ниже уровня пола.

Механизм смены валков состоит из семи (по числу клетей) самостоятельных механизмов смены рабочих и опорных валков, объединенных между собой поездом тележек, предназначенным для боковой сдвижки рабочих валков вдоль фронта клетей.

Каждый из механизмов смены установки напротив окна соответствующей клети и состоит из узла рам, рамы тележки, верхней рамы двух тележек

Продольного и одной тележки поперечного перемещения, балок гидравлических приводов, плитных настилов.

Узел рам состоит из собственно сварной рамы с направляющими для перемещения салазок клети, установленной на фундаменте и опирается на зуб станины. На раме закреплены балки с «С» - образным направляющими, а на балках в свою очередь установлены рельсы. Крайние от клети балки вторым концом одновременно опираются на закрепленную к фундаменту раму механизма подъема верхней поперечной рамы. На рамах установленных на фундаменте, смонтированы механизмы подъема крюка (защелки) и силовой гидроцилиндр вывалки - завалки рабочих и опорных валков.

Механизм подъема крюка состоит из шарнирно установленных на раме (со стороны клети) и приводимых от гидроцилиндра, рычагов, несущих линейку.

В «С» - образных направляющих балках на катках установлена рама тележки, которая имеет крюк для сцепления с зубом салазок клети. На одной оси с крюком жестко закреплен рычаг с роликом, при этом ролик наезжая на поднятую линейку имеет возможность проворачивать рычаг и поднимать крюк. Рама тележки посредством вставной оси шарнирно связана с силовым гидроцилиндром и имеет вертикальную колонну с направляющими.

На раме тележки установлена верхняя рама, направляющие которой охватывают направления колонны рамы тележки. Верхняя рама имеет консольную часть, на конце которой размещены откидной крюк для сцепления с зубом на нижней рабочей подушке или с зубом вставки. С противоположной от консольной стороны на верхней раме установлен контргруз. Через боковые катки верхняя рама в исходном положении опирается на ползуны механизма подъема верхней рамы, которые в свою очередь установлены в соответствующих направляющих рамы механизма подъема и через рычаги приводится от одного гидравлического цилиндра. Консольная часть верхней рамы в нижнем исходном положении через ролики опирается на платформу (тележку) поперечного перемещения, которая посредством катков установлена на рельсовых направляющих балок.

Платформа снабжена направляющими рельсового типа на которых через катки установлена по оси клети одна из тележек продольного перемещения. Вторая тележка установлена на направляющих балок, расположенных на фундаменте в промежутках между перевалочными проемами клетей. Платформа в нижней передней части имеет кронштейны, которые соединяются своими захватами с зубом салазок клети.

Каждая из тележек снабжена направляющими для перемещения катков подушек нижнего рабочего валка или катков вставки. Между собой тележки связаны в поезд через захваты таким образом, что гарантированный зазор между захватами тележек, расположенных в промежутках клетей и тележкой, установленной по оси клети, обеспечивает беспрепятственный отвод последней (вместе с платформой) от клети при перевалке опорных валков. При этом один из захватов каждой сопрягаемой пары жестко установлен на тележке, а другой имеет возможность установки относительно первого с последующим креплением болтами. Кроме того, механизмы смены крайних клетей №7 и №13 (14) снабжены гидроцилиндрами для перемещения поезда тележек и съемными настилами, закрывающими гидроцилиндры. При этом крайние тележки имеют концевые ролики, которые установлены с зазором под настилами, а гидроцилиндры, опирающиеся через отдельные рамы на фундамент, шарнирно связаны с тележками посредством проушин с камнем. Тележки, установленные на балках в межперевалочных промежутках оснащен кронштейнами с боковыми фиксаторами в виде подпружиненного шарика, центрируемого в пазе специального копира балки, что исключает смещение этих тележек при отведенной платформе.

Проемы между клетью и платформой каждого механизма смены перекрыты съемной настильной плитой, которая с одной стороны опирается на зуб станины, а с другой на кронштейны платформы и центрируется соответственно между приварными упорами станины и уступами облицовочных плит фундамента. На настильной плите расположены направляющие, которые с зазором стыкуются с одной стороны с направляющими балок клети, а с другой стороны - с направляющими тележки; при этом направляющие балок, настильной плиты и тележки лежат в одной плоскости.

В свою очередь на том уровне к направляющим каждой тележки установленной по оси клети, прилегают направляющие верхней рамы (в исходном положении), а к ним - рельсовые направляющие, по которым рабочие валки посредством специальных самоходных тележек, транспортируются в вальцешлифовальную мастерскую.

При смене опорных валков используется специальная вставка с катками, которая устанавливается краном на направляющие тележки, расположенной по оси клети. Заталкивание вставки в клеть и извлечение ее из клети осуществляется при перемещении от гидроцилиндра верхней рамы. Для этого на вставке имеется зуб, который сцепляется с крюком верхней рамы.

Крайние положения рамы тележки механизма подъема верхней рамы, механизма подъема крюка гидравлического привода перемещения поезда тележек (как и крайние положения защелок для осевой фиксации подушек валков клети) контролируется конечными выключателями.

Смена рабочих валков.

Перед перевалкой валков поезд тележек должен находится в исходном положении. При этом положения тележки располагаются по осям клетей, а тележки, с предварительно установленным комплектом новых валков - сбоку от клети.

Стан останавливают на перевалку после выхода полосы из последней клети. Остановка клетей производится электрическим торможением двигателя по сигналу от датчика углового положения межклетьевая арматура отводится за пределы окон станин клетей; отсоединяются защелки рабочих валков, нажимные винты вместе с верхним опорным валком поднимаются в верхнее положение; отсоединяются трубопровода гидравлики к рабочим валкам. Балки нижних опорных валков, которые служат направляющими для перемещения рабочих валков и устанавливается на уровне перевалки.

Далее верхняя рама каждого механизма смены поднимается в верхнее положение и от силового гидроцилиндра перемещается вместе с рамой тележки к рабочей клети. После сцепления крюков верхней рамы с зубьями нижней подушки обратным ходом гидроцилиндра комплект изношенных рабочих валков извлекается из клети и устанавливается на тележки. Отсоединяются крюки от подушки каждого из комплектов рабочих валков и гидроцилиндрами производится передвижение поезда тележек продольного перемещения для смещения изношенных комплектов рабочих валков в сторону с одновременной установкой новых комплектов по оси клетей. Посредством крюков верхние рамы соединяются с новыми комплектами рабочих валков и от гидроцилиндров (при перемещение рам тележек к клетям) производится их завалка в клети.

После окончания завалки верхняя рама отводится (вместе с рамой тележки) в крайнее положение и опускается на исходный уровень, межвалковая арматура устанавливается в рабочее положение, производится подготовка клетей к работе и их настройка.

Кроме синхронной смены рабочих валков одновременно на всех клетях возможна смена валков одновременно на всех клетях возможна смена валков на отдельной клети.

После перевалки комплекты изношенных рабочих валков устанавливаются по соям клетей, сцепляются с самоходными тележками и транспортируются в вальцешлифовальную мастерскую.

Смена опорных валков.

Перевалка опорных валков чистовых клетей производится после извлечения из клети комплекта рабочих валков. Отсоединяются шланги подвода смазки и гидравлики к опорным подушкам, отводятся защелки фиксаций подушек и убираются настильные плиты.

Посредством верхней рамы в клеть вводят вставку. Одновременно крюк рамы тележки при опущенной линейке механизма подъема крюка автоматически сцепляется с зубом салазок клети. Далее на проставку опускают верхний опорный валок и гидроцилиндром комплект опорных валков вместе с платформой и рамой тележки выдвигают за пределы клети. Краном поочередно убирают верхний опорный валок, вставку нижний опорный валок и затем в обратной последовательности устанавливают новый комплект валков и заводят его в клеть. Перед отводом гидроцилиндра в исходное положение, включается механизм подъема крюка и поднимает линейку. После включения гидроцилиндра ролик рычага рамы тележки, наезжая на линейку удерживает крюк в поднятом положении и исключает его сцепление с зубом салазок.

Заключение

Клеть № 6 предназначена для обжатия подката по толщине и получение полосы h1 = 28 мм из подката h0 = 42 мм с последующей прокаткой в клетях 7 - 13.

Представленный расчет показывает, что все технические характеристики позволяют это сделать.

Литература

1. Королев А. А. « Конструкции и расчет машин и механизмов прокатных станов» - М. Металлургия. 1985.

Королев А.А. «Прокатные станы и образование прокатных цехов» - Уч. пособие для вузов - М. Металлургия. 1981.

Целиков А.И., Томленков А.Д., Зюзин В.И. «Теория прокатки». Справочник - М. Металлургия. 1982.

Целиков А.И., Полухин П. И., Гребеник В.М. « Машины и агрегаты металлургических заводов», том 3 - М. Металлургия 1988г.

Целиков А.И. Смирнов В.В. «Прокатные станы» - М. Металлургиздат. 1958г.

Королев А.А. Механическое оборудование прокатных и трубных цехов: Учебник для вузов. - М.: Металлургия, 1987

Механическое оборудование широполосных станов горячей прокатки В.Г. Макогон и др. Металлургия 1969г.

В настоящее время 50-70 % тонколистового проката получают на полосовых станах. Выпускаемая на непрерывных станах продукция характеризуется хорошим качеством поверхности и высокой точностью. Годовая производительность непрерывных широкополосных станов горячей прокатки достигает 4,0-6,0 млн .т .

Благодаря высокой производительности и высокой степени механизации и автоматизации стоимость готовой продукции, получаемой на этих станах, значительно ниже стоимости продукции других полосовых станов.

Непрерывный широкополосный стан 2000

На рис. 31 приведена схема расположения оборудования современного непрерывного широкополосного стана 2000.

Рис. 31. Схема расположения оборудования непрерывного

широкополосного стана 2000:

1 нагревательные печи; 2 -5 рабочие черновые клети; 2 вертикальная черновая двухвалковая клеть-окалиноломатель; 3 двухвалковая клеть; 4 универсальная четырехвалковая клеть; 5 непрерывная трехклетевая подгруппа универсальных четырех валковых клетей; 6 промежуточный рольганг; 7 летучие барабанные ножницы; 8 чистовой окалиноломатель; 9 непрерывная чистовая группа; 10 отводящие душирующие рольганги; 11 моталки для полосы толщиной 1,2-4 мм ; 12 тележка с кантователем рулонов; 13 моталки для полосы толщиной 4-16 мм ; 14 поворотный стол для рулонов; 15 транспортеры рулонов

Стан предназначен для прокатки рулонной полосовой стали толщиной 1,2-16 мм и шириной 1000-1850 мм . В качестве исходного материала используют литые и катаные слябы толщиной до 300 мм , длиной до 10,5 м и массой 15-20 т из углеродистых и низколегированных сталей. Все клети станаразделены на две группы: черновую (клети 3-5) и чистовую непрерывную (клети 9). Черновая группа состоит из одной клети с горизонтальными валками3 и четырех универсальных клетей с горизонтальными валками диаметромD р = 1600мм и вертикальными валками диаметромD в = 1000мм (клети4 и5 ). Особенностью стана является то, что в черновой группе последние три клети объединены в непрерывную подгруппу5 . Это позволило сократить длину и улучшить температурный режим прокатки за счет уменьшения потерь тепла.

Непрерывная чистовая группа 9 включает семь четырехвалковых клетей (клети кварто) с диаметром рабочих валковD р = 800мм и опорных валковD оп = 1600мм . Перед первой клетью черновой группы установлен черновой окалиноломатель2 , который обеспечивает предварительную ломку печной окалины и формирует точные размеры сляба по ширине. Разрыхленная окалина сбивается с поверхности сляба гидрорсбивом под давлением 15МПа .

Перед прокаткой слябы нагревают в четырех методических печах 1 с шагающими балками до температуры 1150-1280С.

Нагретый сляб выталкивается из печи и рольгангом подается в черновой окалиноломатель, а затем в клети черновой группы. Вертикальные валки универсальных клетей обжимают боковые грани полосы, предотвращая образование выпуклости и, как следствие, разрывов кромок листа при прокатке. После черновой группы полоса толщиной 30-50 мм промежуточным рольгангом6 передается к чистовой группе. Перед чистовой группой установлены летучие ножницы7 , предназначенные для обрезки переднего и заднего концов полосы и роликовый чистовой окалиноломатель8 , который разрыхляет воздушную окалину и струями воды под высоким давлением удаляет ее с поверхности раската.

При подходе раската к чистовой группе температура металла обычно составляет 1050-1100С, при выходе из последней чистовой клети 850-950С. Чтобы уменьшить температуру полосы при сматывании и тем самым улучшить структуру металла, на участке от чистовой клети до моталки полосы интенсивно охлаждаются до 600-650С с помощью душирующих устройств и сматываются в рулон на одной из пяти ролико-барабанных моталок. На моталках11 сматываются полосы толщиной 1,2-4мм , на моталках13 – полосы толщиной 4-16мм .

Прокатную рулонную полосу подают в цех холодной прокатки или на отделку, которая включает разматывание рулонов, поперечную резку на отдельные листы и укладку листов или продольную резку по ширине полосы на отдельные ленты, которые сматываются на моталках в бунты.