Мощность реактора аэс. Принцип работы атомной электростанции

Атомная электростанция - комплекс необходимых систем, устройств, оборудования и сооружений, предназначенный для производства электрической энергии. В качестве топлива станция использует уран-235. Наличие ядерного реактора отличает АЭС от других электростанций.

На АЭС происходит три взаимных преобразования форм энергии

Ядерная энергия

переходит в тепловую

Тепловая энергия

переходит в механическую

Механическая энергия

преобразуется в электрическую

1. Ядерная энергия переходит в тепловую

Основой станции является реактор - конструктивно выделенный объем, куда загружается ядерное топливо и где протекает управляемая цепная реакция. Уран-235 делится медленными (тепловыми) нейтронами. В результате выделяется огромное количество тепла.

ПАРОГЕНЕРАТОР

2. Тепловая энергия переходит в механическую

Тепло отводится из активной зоны реактора теплоносителем - жидким или газообразным веществом, проходящим через ее объем. Эта тепловая энергия используется для получения водяного пара в парогенераторе.

ЭЛЕКТРОГЕНЕРАТОР

3. Механическая энергия преобразуется в электрическую

Механическая энергия пара направляется к турбогенератору, где она превращается в электрическую и дальше по проводам поступает к потребителям.


Из чего состоит АЭС?

Атомная станция представляет собой комплекс зданий, в которых размещено технологическое оборудование. Основным является главный корпус, где находится реакторный зал. В нём размещается сам реактор, бассейн выдержки ядерного топлива, перегрузочная машина (для осуществления перегрузок топлива), за всем этим наблюдают операторы с блочного щита управления (БЩУ).


Основным элементом реактора является активная зона(1) . Она размещена в бетонной шахте. Обязательными компонентами любого реактора являются система управления и защиты, позволяющая осуществлять выбранный режим протекания управляемой цепной реакции деления, а также система аварийной защиты – для быстрого прекращения реакции при возникновении аварийной ситуации. Все это смонтировано в главном корпусе.

Есть также второе здание, где размещается турбинный зал(2) : парогенераторы, сама турбина. Далее по технологической цепочке следуют конденсаторы и высоковольтные линии электропередач, уходящие за пределы площадки станции.

На территории находятся корпус для перегрузки и хранения в специальных бассейнах отработавшего ядерного топлива. Кроме того, станции комплектуются элементами оборотной системы охлаждения – градирнями(3) (бетонная башня, сужающаяся кверху), прудом-охладителем (естественный водоем, либо искусственно созданный) и брызгальными бассейнами.

Какие бывают АЭС?

В зависимости от типа реактора на АЭС могут быть 1, 2 или 3 контура работы теплоносителя. В России наибольшее распространение получили двухконтурные АЭС с реакторами типа ВВЭР (водо-водяной энергетический реактор).

АЭС С 1-КОНТУРНЫМИ РЕАКТОРАМИ

АЭС С 1-КОНТУРНЫМИ РЕАКТОРАМИ

Одноконтурная схема применяется на атомных станциях с реакторами типа РБМК-1000. Реактор работает в блоке с двумя конденсационными турбинами и двумя генераторами. При этом кипящий реактор сам является парогенератором, что и обеспечивает возможность применения одноконтурной схемы. Одноконтурная схема относительно проста, но радиоактивность в этом случае распространяется на все элементы блока, что усложняет биологическую защиту.

В настоящее время в России действует 4 АЭС с одноконтурными реакторами

АЭС С 2-КОНТУРНЫМИ РЕАКТОРАМИ

АЭС С 2-КОНТУРНЫМИ РЕАКТОРАМИ

Двухконтурную схему применяют на атомных станциях с в водо-водяными реакторами типа ВВЭР. В активную зону реактора подается под давлением вода, которая нагревается. Энергия теплоносителя используется в парогенераторе для образования насыщенного пара. Второй контур нерадиоактивен. Блок состоит из одной конденсационной турбины мощностью 1000 МВт или двух турбин мощностью по 500 МВт с соответствующими генераторами.

В настоящее время в России действует 5 АЭС с двухконтурными реакторами

АЭС С 3-КОНТУРНЫМИ РЕАКТОРАМИ

АЭС С 3-КОНТУРНЫМИ РЕАКТОРАМИ

Трехконтурную схему применяют на АЭС с реакторами на быстрых нейтронах с натриевым теплоносителем типа БН. Чтобы исключить контакт радиоактивного натрия с водой, сооружают второй контур с нерадиоактивным натрием. Таким образом схема получается трехконтурной.

Современный человек не мыслит жизни без электричества. Если электроснабжение прекратится даже на несколько часов, жизнь мегаполиса парализуется. Более 90% электроэнергии в Воронежской области вырабатывает Нововоронежская атомная электростанция. Корреспонденты РИА «Воронеж» побывали на НВ АЭС и выяснили, как атомная энергия превращается в электричество.

Когда появилась первая атомная электростанция?

В 1898 году известные ученые Мария Склодовская-Кюри и Пьер Кюри обнаружили, что настуран – минерал урана – радиоактивен, а в 1933 году американский физик Лео Силард впервые выдвинул идею цепной ядерной реакции – принцип, который после его осуществления на практике открыл дорогу для создания ядерного оружия. Первоначально энергия атома использовалась в военных целях. Впервые атом в мирных целях начали использовать в СССР. Первую в мире экспериментальную атомную электростанцию мощность всего 5 МВт запустили в 1954 году в городе Обнинске Калужской области. Работа первой экспериментальной АЭС показала свою перспективность и безопасность. При ее работе отсутствуют вредные выбросы в окружающую среду, в отличие от тепловых станций не требуется большого количества органического топлива. Сегодня АЭС – одни из самых экологически чистых источников энергии.

Когда построили Нововоронежскую АЭС?

Строительство первого промышленного блока НВ АЭС

Впервые промышленное использование атомной энергии в Советском союзе началось на Нововоронежской АЭС. В сентябре 1964 года был запущен первый энергоблок НВАЭС с водо-водяным реактором (ВВЭР), его мощность составляла 210 МВт – почти в 40 раз больше, чем у первой экспериментальной атомной станции. Такая модель реактора считается одной из самых технически совершенных и безопасных в мире. Прототипами ВВЭР для АЭС послужили реакторы подводных лодок. Во время строительства первого энергоблока Нововоронежской АЭС не было учебных центров подготовки специалистов, способных эксплуатировать реакторы. Первых атомщиков набирали из бывших подводников.

На Нововоронежской АЭС было построено и введено в эксплуатацию пять энергоблоков, на сегодня работают три из них, ведется строительство и подготовка к пуску еще двух новых. Все энергоблоки на НВАЭС с реакторами ВВЭР.

Сколько энергии вырабатывает атомная станция?

Мощность энергоблока может составлять от нескольких единиц до нескольких тысяч МВт. Промышленные атомные электростанции очень мощные. Нововоронежская АЭС обеспечивает около 90 % потребности Воронежской области в электрической энергии и почти 90 % – потребности Нововоронежа в тепле. Суммарная мощность энергоблоков Новоронежской АЭС составляет 1800 МВт. Годового объема вырабатываемой на АЭС электроэнергии достаточно, чтобы обеспечить воронежскому авиазаводу 191 год бесперебойной работы или осветить 650 стандартных девятиэтажных домов. После запуска шестого и седьмого энергоблоков суммарная мощность Нововоронежской АЭС вырастет в 2,23 раза. Тогда годового объема энергии, вырабатываемой атомной станцией, хватит, чтобы обеспечить работу Российских железных дорог более чем на 8 месяцев.

Как устроена АЭС?

Энергоблок № 5 НВ АЭС

Энергия на атомной станции вырабатывается в реакторе. Топливом для него служит искусственно обогащенный уран в виде таблеток диаметром несколько миллиметров. Урановые таблетки помещают в тепловыделяющие элементы (ТВЭЛы) – это герметичные полые трубки из жаропрочного циркония. Из ТВЭЛов собирают тепловыделяющие сборки (ТВС). В активной зоне ВВЭР находится несколько сотен ТВС – в них происходят процессы деления ядер урана. Именно ТВС осуществляют передачу энергии, нагревая теплоноситель первого контура. Плотность нейтронов в реакторе и есть мощность реактора, и регулируется она количеством вводимого в активную зону поглотителя нейтронов-борсодержащих элементов (как тормоз на автомобиле). Для производства электричества на энергоблоках АЭС, как и на тепловых блоках, используется менее половины выделяемого тепла (закон физики), оставшееся тепло отработавшего в турбине пара отводится в окружающую среду. На первых блоках Новоронежской АЭС для отвода тепла использовали воду из реки Дон. Для охлаждения третьего и четвертого энергоблоков используют градирни - конструкции из железа и алюминия высотой около 91 метра и массой 920 тонн, где нагретая циркуляционная вода охлаждается потоком воздуха. Для охлаждения пятого энергоблока построен пруд-охладитель, заполненный циркуляционной водой, и его поверхность используется для отдачи тепла в окружающую среду. Эта вода не соприкасается с водой первого контура и совершенно безопасна. Пруд-охладитель настолько чистый, что в 2010 году на нем проводились всероссийские соревнования по рыбной ловле. Для охлаждения циркуляционной воды 6 и 7 блоков построены самые высокие в России градирни высотой 173 м. С самого верха градирни хорошо видны окраины г. Воронежа.

Как атомная энергия превращается в электричество?

В активной зоне ВВЭР происходят процессы деления ядер урана. При этом выделяется огромное количество энергии, которая нагревает воду (теплоноситель) первого контура до температуры около 300 °C. Вода при этом не кипит, так как находится под высоким давлением (принцип скороварки). Теплоноситель первого контура радиоактивен, поэтому не покидает пределов контура. Далее он подается в парогенераторы, где вода второго контура нагревается и превращается в пар, и уже он в турбине преобразует свою энергию в электрическую.

Как электричество попадает к нам в квартиры?

Электрический ток – упорядоченное некомпенсированное движение свободных электрически заряженных частиц-электронов под воздействием электрического поля. От атомной электростанции по проводам уходит колоссальное количество мощности напряжением 220 или 500 тыс. вольт. Такое высокое напряжение необходимо для снижения потерь при передачах на большие расстояния. Однако потребителю такое напряжение не требуется и очень опасно. Перед тем, как электрический ток попадет в дома, напряжение снижают с помощью трансформаторов до привычных 220 вольт. Вставляя в розетку вилку электроприбора, вы подключаете его к электрической сети.

Насколько безопасна атомная энергетика?


Пруд-охладитель НВ АЭС

При правильной эксплуатации атомная станция совершенно безопасна. Радиационный фон в зоне 30 км вокруг Новоронежской АЭС контролируют 20 автоматических постов. Они работают в режиме непрерывного измерения. За всю историю работы станции радиационный фон ни разу не превысил естественных фоновых значений. Но атомная энергетика имеет потенциальную опасность. Поэтому с каждым годом системы безопасности на АЭС становятся все более совершенными. Если для первых поколений АЭС (1,2 энергоблоки) основные системы безопасности были активными, то есть запустить их должен был человек или автоматика, то при проектировании блоков поколения 3+ (6-й и 7-й энергоблоки Нововоронежской АЭС) основную ставку делают на пассивные системы безопасности. В случае потенциально опасной ситуации они сработают сами, подчиняясь не человеку или автоматике, а законам физики. Например, при обесточивании на атомной станции защитные органы под действием силы тяжести самопроизвольно упадут в активную зону и заглушат реактор.

Персонал атомной станции регулярно тренируется справляться с разного рода ЧП. Аварийные ситуации моделируются на специальных полномасштабных тренажерах – компьютеризированных устройствах внешне не отличимых от блочных щитов управления. Оперативный персонал управляющий реактором, каждые 5 лет получает в Ростехнадзоре лицензию на право ведения технологического процесса (управления блоком АС). Процедура схожа с получением водительских прав. Специалист сдает теоретические экзамены и демонстрирует практические навыки на тренажере. Только имея лицензию и сдав экзамены на АЭС, персонал допускается к эксплуатации реактора.

Заметили ошибку? Выделите ее мышью и нажмите Ctrl+Enter

Атомная электростанция (АЭС) - комплекс технических сооружений , предназначенных для выработки электрической энергии путем использования энергии, выделяемой при контролируемой ядерной реакции.

В качестве распространенного топлива для атомных электростанций применяется уран. Реакция деления осуществляется в основном блоке атомной электростанции - ядерном реакторе.

Реактор смонтирован в стальном корпусе, рассчитанном на высокое давление - до 1,6 х 107 Па, или 160 атмосфер.
Основными частями ВВЭР-1000 являются:

1. Активная зона, где находится ядерное топливо, протекает цепная реакция деления ядер и выделяется энергия.
2. Отражатель нейтронов, окружающий активную зону.
3. Теплоноситель.
4. Система управления защиты (СУЗ).
5. Радиационная защита.

Теплота в реакторе выделяется за счет цепной реакции деления ядерного топлива под действием тепловых нейтронов. При этом образуются продукты деления ядер, среди которых есть и твердые вещества, и газы - ксенон, криптон. Продукты деления обладают очень высокой радиоактивностью, поэтому топливо (таблетки двуокиси урана) помещают в герметичные циркониевые трубки - ТВЭЛы (тепловыделяющие элементы). Эти трубки объединяются по несколько штук рядом в единую тепловыделяющую сборку. Для управления и защиты ядерного реактора используются регулирующие стержни, которые можно перемещать по всей высоте активной зоны. Стержни изготавливаются из веществ, сильно поглощающих нейтроны - например, из бора или кадмия. При глубоком введении стержней цепная реакция становится невозможной, поскольку нейтроны сильно поглощаются и выводятся из зоны реакции. Перемещение стержней производится дистанционно с пульта управления. При небольшом перемещении стержней цепной процесс будет либо развиваться, либо затухать. Таким способом регулируется мощность реактора.

Схема станции - двухконтурная. Первый, радиоактивный, контур состоит из одного реактора ВВЭР 1000 и четырех циркуляционных петель охлаждения. Второй контур, нерадиоактивный, включает в себя парогенераторную и водопитательную установки и один турбоагрегат мощностью 1030 МВт. Теплоносителем первого контура является некипящая вода высокой чистоты под давлением в 16 МПа с добавлением раствора борной кислоты - сильного поглотителя нейтронов, что используется для регулирования мощности реактора.

1. Главными циркуляционными насосами вода прокачивается через активную зону реактора, где она нагревается до температуры 320 градусов за счет тепла, выделяемого при ядерной реакции.
2. Нагретый теплоноситель отдает свою теплоту воде второго контура (рабочему телу), испаряя ее в парогенераторе.
3. Охлажденный теплоноситель вновь поступает в реактор.
4. Парогенератор выдает насыщенный пар под давлением 6,4 МПа, который подается к паровой турбине.
5. Турбина приводит в движение ротор электрогенератора.
6. Отработанный пар конденсируется в конденсаторе и вновь подается в парогенератор конденсатным насосом. Для поддержания постоянного давления в контуре установлен паровой компенсатор объема.
7. Теплота конденсации пара отводится из конденсатора циркуляционной водой, которая подается питательным насосом из пруда охладителя.
8. И первый, и второй контур реактора герметичны. Это обеспечивает безопасность работы реактора для персонала и населения.

В случае невозможности использования большого количества воды для конденсации пара, вместо использования водохранилища, вода может охлаждаться в специальных охладительных башнях (градирнях).

Безопасность и экологичность работы реактора обеспечиваются жестким выполнением регламента (правил эксплуатации) и большим количеством контрольного оборудования. Все оно предназначено для продуманного и эффективного управления реактором.
Аварийная защита ядерного реактора - совокупность устройств, предназначенная для быстрого прекращения цепной ядерной реакции в активной зоне реактора.

Активная аварийная защита автоматически срабатывает при достижении одним из параметров ядерного реактора значения, которое может привести к аварии. В качестве таких параметров могут выступать: температура, давление и расход теплоносителя, уровень и скорость увеличения мощности.

Исполнительными элементами аварийной защиты являются, в большинстве случаев, стержни с веществом, хорошо поглощающим нейтроны (бором или кадмием). Иногда для остановки реактора жидкий поглотитель впрыскивают в контур теплоносителя.

Дополнительно к активной защите, многие современные проекты включают также элементы пассивной защиты . Например, современные варианты реакторов ВВЭР включают "Систему аварийного охлаждения активной зоны" (САОЗ) - специальные баки с борной кислотой, находящиеся над реактором. В случае максимальной проектной аварии (разрыва первого контура охлаждения реактора), содержимое этих баков самотеком оказываются внутри активной зоны реактора и цепная ядерная реакция гасится большим количеством борсодержащего вещества, хорошо поглощающего нейтроны.

Согласно "Правилам ядерной безопасности реакторных установок атомных станций", по крайней мере одна из предусмотренных систем остановки реактора должна выполнять функцию аварийной защиты (АЗ). Аварийная защита должна иметь не менее двух независимых групп рабочих органов. По сигналу АЗ рабочие органы АЗ должны приводиться в действие из любых рабочих или промежуточных положений.
Аппаратура АЗ должна состоять минимум из двух независимых комплектов.

Каждый комплект аппаратуры АЗ должен быть спроектирован таким образом, чтобы в диапазоне изменения плотности нейтронного потока от 7% до 120% номинального обеспечивалась защита:
1. По плотности нейтронного потока - не менее чем тремя независимыми каналами;
2. По скорости нарастания плотности нейтронного потока - не менее чем тремя независимыми каналами.

Каждый комплект аппаратуры АЗ должен быть спроектирован таким образом, чтобы во всем диапазоне изменения технологических параметров, установленном в проекте реакторной установки (РУ), обеспечивалась аварийная защита не менее чем тремя независимыми каналами по каждому технологическому параметру, по которому необходимо осуществлять защиту.

Управляющие команды каждого комплекта для исполнительных механизмов АЗ должны передаваться минимум по двум каналам. При выводе из работы одного канала в одном из комплектов аппаратуры АЗ без вывода данного комплекта из работы для этого канала должен автоматически формироваться аварийный сигнал.

Срабатывание аварийной защиты должно происходить как минимум в следующих случаях:
1. При достижении уставки АЗ по плотности нейтронного потока.
2. При достижении уставки АЗ по скорости нарастания плотности нейтронного потока.
3. При исчезновении напряжения в любом не выведенном из работы комплекте аппаратуры АЗ и шинах электропитания СУЗ.
4. При отказе любых двух из трех каналов защиты по плотности нейтронного потока или по скорости нарастания нейтронного потока в любом не выведенном из работы комплекте аппаратуры АЗ.
5. При достижении уставок АЗ технологическими параметрами, по которым необходимо осуществлять защиту.
6. При инициировании срабатывания АЗ от ключа с блочного пункта управления (БПУ) или резервного пункта управления (РПУ).

Материал подготовлен интернет-редакцией www.rian.ru на основе информации РИА Новости и открытых источников

Атомная электроэнергетика – современный и быстро развивающийся способ добычи электричества. А вы знаете, как устроены атомные станции? Каков принцип работы АЭС? Какие типы ядерных реакторов сегодня существуют? Постараемся детально рассмотреть схему работы АЭС, вникнуть в устройство ядерного реактора и узнать о том, насколько безопасен атомный способ добычи электроэнергии.

Как устроена АЭС?

Любая станция – это закрытая зона вдалеке от жилого массива. На ее территории находятся несколько зданий. Самое главное сооружение – здание реактора, рядом с ним расположен машинный зал, из которого реактором управляют, и здание безопасности.

Схема невозможна без ядерного реактора. Атомный (ядерный) реактор – это устройство АЭС, которое призвано организовать цепную реакцию деления нейтронов с обязательным выделением энергии при этом процессе. Но каков принцип работы АЭС?

Вся реакторная установка помещается в здание реактора, большую бетонную башню, которая скрывает реактор и в случае аварии удержит в себе все продукты ядерной реакции. Эту большую башню называют контейнтмент, герметичная оболочка или гермозона.

Гермозона в новых реакторах имеет 2 толстые бетонные стенки – оболочки.
Внешняя оболочка толщиной в 80 см обеспечивает защиту гермозоны от внешних воздействий.

Внутренняя оболочка толщиной в 1 метр 20 см имеет в своем устройстве специальные стальные тросы, которые увеличивают прочность бетона почти в три раза и не дадут конструкции рассыпаться. С внутренней стороны она выложена тонким листом специальной стали, которая призвана служить дополнительной защитой контейнтмента и в случае аварии не выпустить содержимое реактора за пределы гермозоны.

Такое устройство атомной станции позволяет выдержать падение самолета весом до 200 тонн, 8 бальное землетрясение, торнадо и цунами.

Впервые герметичная оболочка была сооружена на американской АЭС Коннектикут Янки в 1968 году.

Полная высота гермозоны – 50-60 метров.

Из чего состоит атомный реактор?

Чтобы понять принцип работы ядерного реактора, а значит и принцип работы АЭС, нужно разобраться в составляющих реактора.

  • Активная зона. Это зона, куда помещается ядерное топливо (тепловыделитель) и замедлитель. Атомы топлива (чаще всего топливом выступает уран) совершают цепную реакцию деления. Замедлитель призван контролировать процесс деления, и позволяет провести нужную по скорости и силе реакцию.
  • Отражатель нейтронов. Отражатель окружает активную зону. Состоит он из того же материала, что и замедлитель. По сути это короб, главное назначение которого – не дать нейтронам выйти из активной зоны и попасть в окружающую среду.
  • Теплоноситель. Теплоноситель должен вобрать в себя тепло, которое выделилось при делении атомов топлива, и передать его другим веществам. Теплоноситель во многом определяет то, как устроена АЭС. Самый популярный теплоноситель на сегодня – вода.
    Система управления реактором. Датчики и механизмы, которые приводят реактор АЭС в действие.

Топливо для АЭС

На чем работает АЭС? Топливо для АЭС – это химические элементы, обладающие радиоактивными свойствами. На всех атомных станциях таким элементом выступает уран.

Устройство станций подразумевает, что АЭС работают на сложном составном топливе, а не на чистом химическом элементе. И чтобы из природного урана добыть урановое топливо, которое загружается в ядерный реактор, нужно провести множество манипуляций.

Обогащенный уран

Уран состоит из двух изотопов, то есть в его составе есть ядра с разной массой. Назвали их по количеству протонов и нейтронов изотоп -235 и изотоп-238. Исследователи 20 века начали добывать из руды 235й уран, т.к. его легче было разлагать и преобразовывать. Выяснилось, что такого урана в природе всего 0,7 % (остальные проценты достались 238му изотопу).

Что делать в этом случае? Уран решили обогащать. Обогащение урана это процесс, когда в нем остается много нужных 235х изотопов и мало ненужных 238х. Задача обогатителей урана – из 0.7% сделать почти 100% урана-235.

Обогатить уран можно с помощью двух технологий – газодиффузионной или газоцентрифужной. Для их использования уран, добытый из руды, переводят в газообразное состояние. В виде газа его и обогащают.

Урановый порошок

Обогащенный урановый газ переводят в твердое состояние – диоксид урана. Такой чистый твердый 235й уран выглядит как большие белые кристаллы, которые позже дробят в урановый порошок.

Урановые таблетки

Урановые таблетки – это твердые металлические шайбы, длиной в пару сантиметров. Чтобы из уранового порошка слепить такие таблетки, его перемешивают с веществом – пластификатором, он улучшает качество прессования таблеток.

Прессованные шайбы запекают при температуре 1200 градусов по Цельсию более суток, чтобы придать таблеткам особую прочность и устойчивость к высоким температурам. То, как работает АЭС, напрямую зависит от того, насколько хорошо спрессовали и запекли урановое топливо.

Запекают таблетки в молибденовых ящиках, т.к. только этот металл способен не расплавиться при «адских» температурах свыше полутора тысяч градусов. После этого урановое топливо для АЭС считается готовым.

Что такое ТВЭЛ и ТВС?

Активная зона реактора внешне выглядит как огромный диск или труба с дырками в стенках (в зависимости от типа реактора), раз в 5 больше человеческого тела. В этих дырках находится урановое топливо, атомы которого и проводят нужную реакцию.

Просто так закинуть топливо в реактор невозможно, ну, если вы не хотите получить взрыв всей станции и аварию с последствиями на пару близлежащих государств. Поэтому урановое топливо помещается в ТВЭЛы, а потом собирается в ТВС. Что значат эти аббревиатуры?

  • ТВЭЛ – тепловыделяющий элемент (не путать с одноименным названием российской компании, которая их производит). По сути это тонкая и длинная циркониевая трубка, сделанная из сплавов циркония, в которую помещаются урановые таблетки. Именно в ТВЭЛах атомы урана начинают взаимодействовать друг с другом, выделяя тепло при реакции.

Цирконий выбран материалом для производства ТВЭЛов благодаря его тугоплавкости и антикоррозийности.

Тип ТВЭЛов зависит от типа и строения реактора. Как правило, строение и назначение ТВЭЛов не меняется, разными могут быть длина и ширина трубки.

В одну циркониевую трубку автомат загружает более 200 урановых таблеток. Всего в реакторе одновременно работают около 10 миллионов урановых таблеток.
ТВС – тепловыделяющая сборка. Работники АЭС называют ТВС пучками.

По сути это несколько ТВЭЛов, скрепленных между собой. ТВС – это готовое атомное топливо, то, на чем работает АЭС. Именно ТВС загружаются в ядерный реактор. В один реактор помещаются около 150 – 400 ТВС.
В зависимости от того, в каком реакторе ТВС будет работать, они бывают разной формы. Иногда пучки складываются в кубическую, иногда в цилиндрическую, иногда в шестиугольную форму.

Одна ТВС за 4 года эксплуатации вырабатывает столько же энергии как при сжигании 670 вагонов угля, 730 цистерн с природным газом или 900 цистерн, груженных нефтью.
Сегодня ТВС производят в основном на заводах России, Франции, США и Японии.

Чтобы доставить топливо для АЭС в другие страны, ТВС запечатывают в длинные и широкие металлические трубы, из труб выкачивают воздух и специальными машинами доставляют на борта грузовых самолетов.

Весит ядерное топливо для АЭС запредельно много, т.к. уран – один из самых тяжелых металлов на планете. Его удельный вес в 2,5 раза больше, чем у стали.

Атомная электростанция: принцип работы

Каков принцип работы АЭС? Принцип работы АЭС базируется на цепной реакции деления атомов радиоактивного вещества – урана. Эта реакция происходит в активной зоне ядерного реактора.

Если не вдаваться в тонкости ядерной физики, принцип работы АЭС выглядит так:
После пуска ядерного реактора из ТВЭЛов извлекаются поглощающие стержни, которые не дают урану вступить в реакцию.

Как только стрежни извлечены, нейтроны урана начинают взаимодействовать друг с другом.

Когда нейтроны сталкиваются, происходит мини-взрыв на атомном уровне, выделяется энергия и рождаются новые нейтроны, начинает происходить цепная реакция. Этот процесс выделяет тепло.

Тепло отдается теплоносителю. В зависимости от типа теплоносителя оно превращается в пар или газ, которые вращают турбину.

Турбина приводит в движение электрогенератор. Именно он по факту и вырабатывает электрический ток.

Если не следить за процессом, нейтроны урана могут сталкиваться друг с другом до тех пор, пока не взорвут реактор и не разнесут всю АЭС в пух и прах. Контролируют процесс компьютерные датчики. Они фиксируют повышение температуры или изменение давления в реакторе и могут автоматически остановить реакции.

Чем отличается принцип работы АЭС от ТЭС (теплоэлектростанций)?

Различия в работе есть только на первых этапах. В АЭС теплоноситель получает тепло от деления атомов уранового топлива, в ТЭС теплоноситель получает тепло от сгорания органического топлива (угля, газа или нефти). После того, как или атомы урана, или газ с углём выделили тепло, схемы работы АЭС и ТЭС одинаковы.

Типы ядерных реакторов

То, как работает АЭС, зависит от того, как именно работает ее атомный реактор. Сегодня есть два основных типа реакторов, которые классифицируются по спектру нейронов:
Реактор на медленных нейтронах, его также называют тепловым.

Для его работы используется 235й уран, который проходит стадии обогащения, создания урановых таблеток и т.д. Сегодня реакторов на медленных нейтронах подавляющее большинство.
Реактор на быстрых нейтронах.

За этими реакторами будущее, т.к. работают они на уране-238, которого в природе пруд пруди и обогащать этот элемент не нужно. Минус таких реакторов только в очень больших затратах на проектирование, строительство и запуск. Сегодня реакторы на быстрых нейтронах работают только в России.

Теплоносителем в реакторах на быстрых нейтронах выступает ртуть, газ, натрий или свинец.

Реакторы на медленных нейтронах, которыми сегодня пользуются все АЭС мира, тоже бывают нескольких типов.

Организация МАГАТЭ (международное агентство по атомной энергетике) создало свою классификацию, которой пользуются в мировой атомной энергетике чаще всего. Так как принцип работы атомной станции во многом зависит от выбора теплоносителя и замедлителя, МАГАТЭ базировали свою классификацию на этих различиях.


С химической точки зрения оксид дейтерия идеальный замедлитель и теплоноситель, т.к. ее атомы наиболее эффективно взаимодействуют с нейтронами урана по сравнению с другими веществами. Попросту говоря, свою задачу тяжелая вода выполняет с минимальными потерями и максимальным результатом. Однако ее производство стоит денег, в то время как обычную «легкую» и привычную для нас воду использовать куда проще.

Несколько фактов об атомных реакторах…

Интересно, что один реактор АЭС строят не менее 3х лет!
Для постройки реактора необходимо оборудование, которое работает на электрическом токе в 210 кило Ампер, что в миллион раз превышает силу тока, которая способна убить человека.

Одна обечайка (элемент конструкции) ядерного реактора весит 150 тонн. В одном реакторе таких элементов 6.

Водо-водяной реактор

Как работает АЭС в целом, мы уже выяснили, чтобы все «разложить по полочкам» посмотрим, как работает наиболее популярный водо-водяной ядерный реактор.
Во всем мире сегодня используют водо-водяные реакторы поколения 3+. Они считаются самыми надежными и безопасными.

Все водо-водяные реакторы в мире за все годы их эксплуатации в сумме уже успели набрать более 1000 лет безаварийной работы и ни разу не давали серьезных отклонений.

Структура АЭС на водо-водяных реакторах, подразумевает, что между ТВЭЛами циркулирует дистиллированная вода, нагретая до 320 градусов. Чтобы не дать ей перейти в парообразное состояние ее держат под давлением в 160 атмосфер. Схема АЭС называет ее водой первого контура.

Нагретая вода попадает в парогенератор и отдает свое тепло воде второго контура, после чего снова «возвращается» в реактор. Внешне это выглядит так, что трубки воды первого контура соприкасаются с другими трубками – воды второго контура, они передают тепло друг другу, но воды не контактируют. Контактируют трубки.

Таким образом, исключена возможность попадания радиации в воду второго контура, которая будет далее участвовать в процессе добычи электричества.

Безопасность работы АЭС

Узнав принцип работы АЭС мы должны понимать как же устроена безопасность. Устройство АЭС сегодня требует повышенного внимания к правилам безопасности.
Затраты на безопасность АЭС составляют примерно 40% от общей стоимости самой станции.

В схему АЭС закладываются 4 физических барьера, которые препятствуют выходу радиоактивных веществ. Что должны делать эти барьеры? В нужный момент суметь прекратить ядерную реакцию, обеспечивать постоянный отвод тепла от активной зоны и самого реактора, предотвращать выход радионуклеидов за пределы контайнмента (гермозоны).

  • Первый барьер – прочность урановых таблеток. Важно, чтобы они не разрушались под воздействием высоких температур в ядерном реакторе. Во многом то, как работает атомная станция, зависит от того, как «испекли» таблетки из урана на начальной стадии изготовления. Если таблетки с урановым топливом запечь неверно, то реакции атомов урана в реакторе будут непредсказуемыми.
  • Второй барьер – герметичность ТВЭЛов. Циркониевые трубки должны быть плотно запечатаны, если герметичность будет нарушена, то в лучшем случае реактор будет поврежден и работа остановлена, в худшем – все взлетит на воздух.
  • Третий барьер – прочный стальной корпус реактор а, (та самая большая башня – гермозона) который «удерживает» в себе все радиоактивные процессы. Повредится корпус – радиация выйдет в атмосферу.
  • Четвертый барьер – стержни аварийной защиты. Над активной зоной на магниты подвешиваются стержни с замедлителями, которые могут за 2 секунды поглотить все нейтроны и остановить цепную реакцию.

Если, несмотря на устройство АЭС с множеством степеней защиты, охладить активную зону реактора в нужный момент не удастся, и температура топлива возрастет до 2600 градусов, то в дело вступает последняя надежда системы безопасности – так называемая ловушка расплава.

Дело в том, что при такой температуре дно корпуса реактора расплавится, и все остатки ядерного топлива и расплавленных конструкций стекут в специальный подвешенный над активной зоной реактора «стакан».

Ловушка расплава охлаждаема и огнеупорна. Она наполнена так называемым «жертвенным материалом», который постепенно останавливает цепную реакцию деления.

Таким образом, схема АЭС подразумевает несколько степеней защиты, которые практически полностью исключают любую возможность аварии.

Принципиальная тепловая схема АЭС объединяет технологические схемы установок, входящих в систему АЭС, рассмотренных в предыдущих главах. Она включает в себя только основные установки - реакторную, парогенераторную, паротурбинную, конденсационную и конденсатно-питателъный

тракт, на принципиальную схему наносят основные трубопроводы, соединяющие установки в единую технологическую систему, на линиях стрелками указывают направление потоков пара и конденсата.

Независимо от числа основных и вспомогательных агрегатов на принципиальной тепловой схеме однотипное оборудование изображается только один раз , но со всеми последовательно включенными элементами : например, при установке на АЭС нескольких турбин на принципиальной схеме изображают только одну; трубопроводы указывают только одной линией по направлению основного потока независимо от числа параллельных потоков, без поперечных связей между трубопроводами к отдельным агрегатам, если таковые существуют, и без трубопроводов вспомогательного назначения, например, дренажных с дренажными баками, системы технической воды и др. Многочисленную арматуру, входящую в состав трубопроводов или установленную на самих агрегатах, также не наносят, исключение составляет только арматура, имеющая принципиальное значение, например, регулировочные вентили 21 (рис. 15.1) и 3 (см. рис. 15.3).

Принципиальная тепловая схема является основой для теплового расчета АЭС, для решения различных задач, например, выдачи турбостроительному заводу технического задания на проектирование новой машины, выбора мощности и параметров основных агрегатов, установления тепловой экономичности АЭС в условиях иного в сравнении с заводским расчетом вакуума в конденсаторе и др. Составленная для каждого из этих вариантов принципиальная схема подлежит предварительному расчету, на основе которого можно уточнить основные характеристики оборудования: наиболее экономичное распределение регенеративного подогрева по ступеням, число ступеней подогрева, давление в деаэраторе и др. Из перечисленных выше задач и из гл. 3 следует, что в основном расчет тепловой схемы и различные ее варианты относятся практически только к турбинной установке. Поэтому принципиальные схемы АЭС ниже даются как тепловые схемы паротурбинной части станции.

На рис. 15.1 приведена принципиальная тепловая схема паротурбинной части двухконтурной АЭС с ВВЭР-440. На этой АЭС устанавливаются две турбины К-220-44, но так как тепловая схема принципиальная, то на рис. 15.1 показана только одна турбина, хотя турбина имеет два двухпоточных ЦНД, на рисунке показан только один поток одного ЦНД.

Параметры пара в отборах турбины могут быть взяты по рис. 8.1а. Между ЦСД и ЦНД установлен сепаратор и двухступенчатый промперегреватель. У каждой турбины их по две, но на рис. 15.1 показан один, так как схема принципиальная; вторая ступень перегревателя питается свежим паром.

1 2 - уплотнение штоков клапанов турбины; 3 - уплотнение вала турбины; 4 - ЦСД турбины; 5 6 - ЦНД турбины; 7 8 - насос теплосети; 9 - конденсатор турбины; 10 11 - основной эжектор; 12 - эжектор уплотнений; 13 - конденсатоочистка; 14 15 - ПНД; 16 - дренажный насос; 17 - охладитель дренажа; 18 - деаэратор; 19 - питательный насос с электроприводом; 20 - ПВД; 21 - регулятор давления; 22 23 - БРУ-СН; 24 - БРУ-К

Турбинная установка имеет пять отборов пара из ЦСД (включая отбор после ЦСД) и три отбора пара из ЦНД, всего восемь отборов. Пар первого отбора в качестве греющего направляется в ПВД-3, в него же поступает и конденсат греющего пара промперегревателя второй ступени. Пар второго отбора поступает как греющий пар в первую ступень перегревателя и в ПВД-2. Пар третьего отбора питает ПВД-1 и коллектор пара собственных нужд . От коллектора пара собственных нужд пар поступает через регулятор для поддержания постоянного давления в деаэратор, а также на пароэжекторную машину, установленную в машинном зале, на выпарные аппараты спецводоочистки (СВО) и др. К коллектору пара собственных нужд имеется резервный подвод пара из паропроводов свежего пара через БРУ собственных нужд (БРУ-СН). В деаэратор каскадом сливаются также конденсаты греющих паров ПВД. Выпар деаэратора в качестве рабочей среды поступает в эжекторы - основной и уплотнений. Отборный пар из четвертой ступени используется как греющий пар

для ПНД-5 и для второй ступени подогревателя сетевой воды. (К сожалению, для подогревателей сетевой воды все еще употребляется термин "бойлер", вовсе не отвечающий существу процесса.) Турбина К-220-44 работает на нерадиоактивном паре, поэтому подогреватели сетевой воды - без промежуточного контура. Однако для большей радиационной безопасности давление в тепловой сети принимается большим, чем для греющего пара; для схемы, изображенной на рис. 15.1, давление воды в тепловой сети принято 0,6 - 0,7 МПа, поэтому при неплотностях в теплообменной поверхности переток воды возможен только из тепловой сети в греющий пар, но не наоборот.

Пар из пятого отбора используется в качестве греющей среды для ПНД-4, а пар шестого отбора - для ПНД-3 и для первой ступени подогревателя сетевой воды; пар седьмого и восьмого отборов подается соответственно в ПНД-2 и ПНД-1.

Конденсат греющего пара подогревателей сетевой воды каскадно сливается из второй ступени в первую и из нее в корпус ПНД-2. Конденсат из ПНД-5 сливается в ПНД-4 и из него затем закачивается дренажным насосом в тракт конденсата. Аналогично выполнена схема слива дренажа и для ПНД-3 и ПНД-2, однако для повышения тепловой экономичности на сливе из ПНД-3 установлен охладитель дренажа. Конденсат греющего пара ПНД-1 через охладитель дренажа сливается в конденсатор.

В конденсатор поступают пар после ЦНД и обессоленная добавочная вода. Образовавшийся конденсат после конденсатора проходит через охладители рабочего пара эжекторов (основного и уплотнений) и поступает на конденсатоочистку. Через конденсатоочистку (рис. 15.1) проходит 100% расхода турбинного конденсата, но не 100% расхода пара на турбину, так как конденсат греющего пара (за исключением ПНД-1) поступает непосредственно в конденсатно-питательный тракт.

Эжекторы размещены до конденсатоочистки, так как важна непосредственная близость основного эжектора к конденсатору, а небольшой прирост температуры конденсата перед ионообменными фильтрами практически не меняет температурного режима их работы. Конденсат рабочего пара эжекторов сливается в конденсатор: непосредственно для основного эжектора и через дренажный бак с последующей закачкой в конденсатор для эжектора уплотнений.

При внезапной остановке турбины имеется возможность сброса свежего пара непосредственно в конденсатор через соответствующую БРУ (через БРУ-К). На схеме показаны также подача пара на уплотнения турбины и их отсос. Так как у турбины К-220-44 ЦСД однопоточный, то это нашло свое отражение в организации уплотнения этой части турбины. Как и на всех последующих современных тепловых схемах АЭС в качестве рабочей среды эжекторов, основного и уплотнений, используется выпар деаэратора.

Принципиальная тепловая схема паротурбинной части двухконтурной АЭС с ВВЭР-1000 и тихоходной турбиной мощностью 1000 МВт приведена на рис. 15.2. Тепловые схемы на рис. 15.1 и 15.2 в целом однотипны. Однако есть и некоторые различия. Прежде всего различаются привод питательного насоса для ВВЭР-1000 применен турбопривод. На принципиальной схеме рис. 15.2 показана только одна из двух приводных турбин, мощность каждой 12 МВт. Конденсат приводной турбины сливается в основной конденсатор. Так как на принципиальной схеме указываются только постоянно работающие элементы, то на рисунке не показаны пусковые электронасосы; их установлено два с подачей по 150 т/ч. Пар, получаемый в парогенераторе в пусковой период, через БРУ-СН поступает в коллектор собственных нужд, от которого имеется резервное питание приводной турбины. После выхода на мощность основной турбины приводная турбина питается постоянно паром после СПП, как и показано на рис. 15.2.

1 2 - блок стопорно-регулирующих клапанов; 3 - ЦСД турбины; 4 - уплотнения вала турбины; 5 - сепаратор-промперегреватель; 6 - отсечная заслонка; 7 - ЦНД турбины; 8 - подогреватели сетевой воды; 9 - насос теплосети; 10 - конденсатор турбины; 11 - конденсатный насос первой ступени; 12 - основной эжектор; 13 - эжектор уплотнений; 14 - конденсатоочистка; 15 - конденсатный насос второй ступени; 16 - ПНД; 17 - дренажный насос; 18 - охладитель дренажа; 19 - деаэратор; 20 - питательный насос с турбоприводом; 21 - ПВД; 22 - коллектор пара собственных нужд; 23 - БРУ-СН; 24 - БРУ-К

Сепарат из СПП направляется в деаэратор, а конденсат греющего пара промперегревателя - из первой ступени в ПВД-2, а из второй - в ПВД-3. Питание ПВД паром осуществляется из первого, второго и третьего отборов турбины. Конденсат греющего пара ПВД-1 сливается в ПНД-4, а конденсат греющего пара ПВД-3 - в ПВД-2, из которого он перетекает в деаэратор, но может при нерасчетном режиме сливаться из ПВД-2 в ПВД-1 и вместе с дренажом ПВД-1 поступать в ПНД-4. Число ПНД уменьшено в сравнении с рис. 15.1, установлены два дренажных насоса и два охладителя дренажа. Это должно способствовать повышению тепловой экономичности турбины К-1000-60/1500 в сравнении с К-220-44. В противоположность этому подача конденсата греющего пара подогревателей теплосети в конденсатор, а не в один из корпусов ПНД, снижает тепловую экономичность и излишне загружает анионит конденсатоочистки. Пар на уплотнения турбины подается из деаэратора. По выполнению этой линии видно, что ЦСД для этой турбины двухпоточные.

Рассмотрение тепловых схем рис. 15.1 им 15.2 и их сопоставление показывают существенное развитие регенеративной системы для турбин двухконтурной АЭС. В значительной мере возможности повышения тепловой экономичности двухконтурной АЭС представляются уже исчерпанными. В схемах двухконтурной АЭС материалом теплообменных поверхностей для ПВД является углеродистая сталь, а для ПНД - часто латунь. Такое решение нежелательно по двум причинам. Во-первых, использование меди более целесообразно в других отраслях техники. Во-вторых, наличие оксидов меди в воде интенсифицирует коррозию сталей. В отдельных проектах несмотря на двухконтурность АЭС трубки ПНД выполняют из нержавеющих аустенитных сталей. Более правильным решением было бы применение для трубок ПНД стали 08Х14МФ или перлитных сталей (что уменьшит капиталовложения для АЭС). Опыт обычной теплоэнергетики свидетельствует о том, что в условиях воды высокой чистоты при дозировании окислителя (газообразного кислорода или перекиси водорода) в конденсат после конденсатоочистки такое решение вполне допустимо, оно целесообразно и для одноконтурной АЭС.

Особенности тепловой схемы одноконтурной АЭС связаны с радиоактивностью паров. В любой схеме таких АЭС обязательно: во-первых, включение в тепловую схему испарителя для получения нерадиоактивного пара, подаваемого на уплотнения турбин, во-вторых, использование промежуточного водяного контура между греющим паром и водой теплосети. Выполнение этих решений обязательно.

Основное отличие тепловых схем одноконтурной АЭС от двухконтурной АЭС связано с обеспечением надежного

водного режима реактора. В реактор двухконтурной АЭС извне поступает небольшое количество подпиточной воды, а продукты коррозии имеют своим источником ограниченный первый контур, выполняемый из нержавеющих аустенитных сталей. В реактор одноконтурной АЭС поступают большие расходы питательной воды, равные паропроизводительности установки, и продукты коррозии не только реакторного контура, но и всей регенеративной системы турбины. От естественных примесей воды реактор одноконтурной АЭС надежно защищает 100%-ная конденсатоочистка. Поэтому основное внимание при разработке тепловой схемы турбинной части одноконтурной АЭС уделяется решению проблемы удаления продуктов коррозии из тракта, предшествующего реактору. Эти вопросы решаются по-разному и не нашли еще своего окончательного решения. На первых блоках отечественных одноконтурных АЭС с РБМК-1000, стремясь уменьшить поступление продуктов коррозии в воду реактора, подогреватели высокого давления не устанавливали, все конденсаты греющего пара и слив из сепаратора направляли в конденсатор для последующей очистки их совместно с турбинным конденсатом на конденсатоочистке. Потерю тепловой экономичности, вызываемую сливом в конденсатор всех этих потоков, в какой-то мере компенсировали охладители дренажей, которые были установлены после каждого ПНД и соответственно усложняли схему. Для РБМК-1000 отказ от установки ПВД сохранился, но в тепловую схему АЭС с РБМК-1000 были внесены определенные изменения. Такая схема, осуществленная на многих блоках с РБМК-1000, показана на рис. 15.3.

Основные особенности этой тепловой схемы следующие; для уменьшения поступления продуктов коррозии в реакторную воду, как было сказано выше, ПВД не установлены, что приводит к определенной потере тепловой экономичности, так как температура питательной воды ниже оптимальной; охладитель дренажа оставлен только после ПНД-1; сепарат из СПП сливается в ПНД-3; конденсат греющего пара первой и второй ступеней перегрева направлен в деаэратор; все конденсаты греющих паров каскадом сливаются в конденсатор.

Такое решение приводит к заметной потере тепловой экономичности. Кроме того, из этого потока нужно удалять именно продукты коррозии, что требует только механической фильтрации, но не ионного обмена, осуществляемого в конденсатоочисткс. Поэтому очистка конденсатов греющих паров ПНД на конденсатоочистке приводит к перерасходу смол, в частности дорогостоящего анионита. Более рациональное (предпочтительное) решение по очистке конденсата греющего пара ПНД показано на рис. 15.4б в сравнении с решением, осуществленным по рис. 15.4a , отвечающим тепловой схеме рис. 15.3.

1 - питательный насос; 2 - деаэратор; 3 - регулятор давления; 4 - испаритель; 5 - уплотнения штоков клапанов турбины; 6 - блок стопорно-регулирующих клапанов; 7 - ЦСД турбины; 8 - сепаратор-промперегреватель; 9 - уплотнения вала турбины; 10 - ЦНД турбины; 11 - отсекающая заслонка; 12 - подогреватели промконтура теплосети; 13 - насос промконтура теплосети; 14 - конденсатор турбины; 15 - конденсатный насос первого подъема; 16 - основной эжектор; 17 - эжектор уплотнений; 18 - конденсатоочистка; 19 - конденсатный насос второго подъема; 20 - ПНД

Как видно из рис. 15.4а , конденсатоочистка состоит из катионитового фильтра К, играющего роль механического фильтра, и последующего фильтра смешивающего действия ФСД, в котором в смешанном слое катионита и анионита происходит ионный обмен. Исследования показывают, что в собственно турбинном конденсате содержание оксидов железа близко к их истинной растворимости; содержание оксидов железа в каскадном сливе конденсатов греющих паров составляет 35-40 мкг/кг, существенно превышая растворимость. Смешение двух потоков с разными физико-химическими показателями и их совместная очистка ухудшает степень выведения продуктов коррозии из тракта и удорожает конденсатоочистку. Более правильным является раздельная очистка этих потоков, показанная на рис. 15.4б . Наполнители для механических фильтров предлагаются различные. Важно то, что все они существенно дешевле ионообменных смол. Сопоставление рис. 15.4а и б показывает также, что сокращается вообще число

фильтров. Каскадный слив всех дренажей системы ПНД, показанный на рис. 15.3, является ошибочным решением, принятым ХТГЗ по согласованию с ЛАЭС, на которой устанавливались первые блоки РБМК. При этом экономичность турбинной установки и, следовательно, всей АЭС является наименьшей. Ошибочно также использование в качестве механического фильтра нерегенерируемого катионита. Это решение не только наиболее дорогое, но и наиболее неблагоприятное, так как даже нерегенерируемый катионит будет способствовать колебаниям значения рН, что неблагоприятно для одноконтурной АЭС. Более рационально использовать в качестве механического фильтра электромагнитный фильтр (ЭМФ).

На ЭМФ следует очищать от механических примесей (продуктов коррозии) также и все дренажи ПНД, а также и теплофикационной установки. Большое достоинство ЭМФ - их исключительная компактность, что связано с большой допустимой скоростью фильтрования (1000 м 3 /ч). Так, на турбину мощностью 750 МВт при полном расходе питательной воды достаточно трех фильтров диаметром 1 м и высотой 3 м. Установка ЭМФ показана на рис. 15.5.

В фильтр загружаются мягкомагнитные шарики диаметром 6 мм. При наложении электромагнитного поля ферромагнитные загрязнения воды, перемещаются к магнитным полюсам шариков, где и отлагаются. Немагнитные оксиды железа и других металлов и неметаллические загрязнения в большей мере адсорбируются отложившимися магнитными оксидами железа. При превышении сопротивления фильтра на 0,1 МПа (10%) фильтр автоматически переводится в режим промывки, по завершении которой также автоматически включается в работу. При работе фильтра задвижки 2 и 5 открыты, а задвижки 4, 6 и 7 закрыты. Фильтр выводится на промывку через 1 - 2 недели работы (в зависимости от роста сопротивления). При переводе в промывочный режим открывается задвижка 7 на байпасе фильтра. Затем закрываются задвижки 2 и 5 и открываются задвижки 4 и 6 для прохода воды в фильтр с последующим сбросом ее в дренажный бак. Промывка занимает около 2 мин. Введение фильтра в работу предусматривает закрытие задвижек 4 и 6 , открытие задвижек 2 и 5 и закрытие задвижки 7 .

Большим недостатком ЭМФ является выключение их из работы и выброс уже поглощенных продуктов коррозии в воду "залпом", что может произойти в отсутствии электронапряжения. Поэтому в схеме их установки всегда должны предусматриваться "страховочные" элементы после ЭМФ. Таким элементом является ФСД на рис. 15.6 и фильтр насыпного типа после ЭМФ на сливе всех дренажей (рис. 15.6).

1 - вода на очистку; 2, 4, 5, 6, 7 - задвижки; 3 - ЭМФ; 5 - очищенная вода


Рис. 15.6. Использование ЭМФ в сочетании со "страховочными" элементами:

1 - ЭМФ; 2 - ФСД; 3, 4 - насыпной фильтр

К сожалению, для создаваемых ХТГЗ блоков с РБМК-1500 с согласия заказчика сепарат вообще (без очистки!) закачивают обратно в реактор.